

Contents

Contents 2

2 Hello, Haskell! 1
2.1 Hello, Haskell . 2
2.2 Interacting with Haskell code 2
2.3 Understanding expressions 5
2.4 Functions . 7
2.5 Evaluation . 10
2.6 Infix operators . 12
2.7 Declaring values . 16
2.8 Arithmetic functions in Haskell 23
2.9 Parenthesization . 30
2.10 Let and where . 34
2.11 Chapter Exercises . 37
2.12 Definitions . 40
2.13 Follow-up resources . 41

3 Strings 43
3.1 Printing strings . 44
3.2 A first look at types . 44
3.3 Printing simple strings . 45
3.4 Top-level versus local definitions 50
3.5 Types of concatenation functions 52
3.6 Concatenation and scoping 54
3.7 More list functions . 57
3.8 Chapter Exercises . 59
3.9 Definitions . 62

4 Basic datatypes 64

2

CONTENTS 3

4.1 Basic Datatypes . 65
4.2 What are types? . 65
4.3 Anatomy of a data declaration 66
4.4 Numeric types . 68
4.5 Comparing values . 74
4.6 Go on and Bool me . 77
4.7 Tuples . 83
4.8 Lists . 85
4.9 Chapter Exercises . 86
4.10 Definitions . 90
4.11 Names and variables . 92

Chapter 2

Hello, Haskell!

Functions are beacons of
constancy in a sea of turmoil.

Mike Hammond

1

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 2

2.1 Hello, Haskell

Welcome to your first step in learning Haskell. Before you begin with
the main course of this book, you will need to install the necessary
tools in order to complete the exercises as you work through the
book. At this time, we recommend installing Stack, which will install
GHC Haskell, the interactive environment called GHCi, and a project
build tool and dependency manager all at once.

You can find the installation instructions online at http://docs.

haskellstack.org/en/stable/README/, and there is also great documen-
tation that can help you get started using Stack. You can also find
installation instructions at https://github.com/bitemyapp/learnhaskell,
and there you will also find advice on learning Haskell and links to
more exercises that may supplement what you’re doing with this
book.

The rest of this chapter will assume that you have completed the
installation and are ready to begin working. In this chapter, you will

• use Haskell code in the interactive environment and also from
source files;

• understand the building blocks of Haskell: expressions and
functions;

• learn some features of Haskell syntax and conventions of good
Haskell style;

• modify simple functions.

2.2 Interacting with Haskell code

Haskell offers two primary ways of working with code. The first
is inputting it directly into the interactive environment known as
GHCi, or the REPL. The second is typing it into a text editor, saving,
and then loading that source file into GHCi. This section offers an
introduction to each method.

Using the REPL

REPL is an acronym short for read-eval-print loop. REPLs are interac-
tive programming environments where you can input code, have it

http://docs.haskellstack.org/en/stable/README/
http://docs.haskellstack.org/en/stable/README/
https://github.com/bitemyapp/learnhaskell

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 3

evaluated, and see the result. They originated with Lisp but are now
common to modern programming languages including Haskell.

Assuming you’ve completed your installation, you should be able
to open your terminal or command prompt, type ghci or stack ghci1,
hit enter, and see something like the following:

GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help

Prelude>

If you used stack ghci2 there was probably a lot more startup text,
and the prompt might be something other than Prelude. That’s all
fine. You may also have a different version of GHC. As long as your
GHC version is between 7.8 and 8.0, it should be compatible with
everything in this book.

Now try entering some simple arithmetic at your prompt:

Prelude> 2 + 2

4

Prelude> 7 < 9

True

Prelude> 10 ^ 2

100

If you can enter simple equations at the prompt and get the ex-
pected results, congratulations — you are now a functional program-
mer! More to the point, your REPL is working well and you are ready
to proceed.

To exit GHCi, use the command :quit or :q.

What is Prelude? Prelude is a library of standard functions. Open-
ing GHCi or Stack GHCi automatically loads those functions so
they can be used without needing to do anything special. You can
turn Prelude off, as we will show you much later, and there are al-
ternative Preludes, though we won’t use them in the book. Pre-
lude is contained in Haskell’s base package, which can be found at

1 If you have installed GHC outside of Stack, then you should be able to open it
with just the ghci command, but if your only GHC installation is what Stack installed,
then you will need stack ghci.

2At this point in the book, you don’t need to use stack ghci, but in later chapters
when we’re importing a lot of modules and building projects, it will be much more
convenient to use it.

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 4

https://www.stackage.org/package/base. You’ll see us mention some-
times that something or other is “in base” which means it’s contained
in that vast foundational package.

GHCi commands

Throughout the book, we’ll be using GHCi commands, such as :quit

and :info in the REPL. Special commands that only GHCi under-
stands begin with the : character. :quit is not Haskell code; it’s just a
GHCi feature. We will see more of these commands throughout the
book.

Wewill present them in the text spelled out, but they can generally
be abbreviated to just the colon and the first letter. That is, :quit
becomes :q, :info becomes :i and so forth. It’s good to type the
word out the first few times you use it, to help you remember what
the abbreviation stands for, but after a few mentions, we will start
abbreviating them.

Working from source files

As nice as REPLs are, usually you want to store code in a file so
you can build it incrementally. Almost all nontrivial programming
you do will involve editing libraries or applications made of nested
directories containing files with Haskell code in them. The basic
process is to have the code and imports (more on that later) in a file,
load it into the REPL, and interact with it there as you’re building,
modifying, and testing it.

You’ll need a file named test.hs. The .hs file extension denotes a
Haskell source code file. Depending on your setup and the workflow
you’re comfortable with, you can make a file by that name and then
open it in your text editor or you can open your text editor, open a
new file, and then save the file with that file name.

Then enter the following code into the file and save it:

sayHello :: String -> IO ()

sayHello x = putStrLn ("Hello, " ++ x ++ "!")

Here, :: is a way to write down a type signature. You can think of
it as saying, “has the type.” So, sayHello has the type String -> IO ().
These first chapters are focused on syntax, so if you don’t understand

https://www.stackage.org/package/base

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 5

what types or type signatures are, that’s OK — we will explain them
soon. For now, keep going.

Then in the same directory where you’ve stored your test.hs file,
open your ghci REPL and do the following:

Prelude> :load test.hs

Prelude> sayHello "Haskell"

Hello, Haskell!

Prelude>

After using :load to load your test.hs, the sayHello function is
visible in the REPL and you can pass it a string argument, such as
“Haskell” (note the quotation marks), and see the output.

You maynotice that after loading code from a source file, the GHCi
prompt is no longer Prelude>. To return to the Prelude> prompt, use
the command :m, which is short for :module. This will unload the file
from GHCi, so the code in that file will no longer be in scope in your
REPL.

2.3 Understanding expressions

Everything in Haskell is an expression or declaration. Expressions
may be values, combinations of values, and/or functions applied
to values. Expressions evaluate to a result. In the case of a literal
value, the evaluation is trivial as it only evaluates to itself. In the case
of an arithmetic equation, the evaluation process is the process of
computing the operator and its arguments, as you might expect. But,
even though not all of your programs will be about doing arithmetic,
all of Haskell’s expressions work in a similar way, evaluating to a
result in a predictable, transparent manner. Expressions are the
building blocks of our programs, and programs themselves are one
big expression made of smaller expressions.

We’ll cover declarations more later, but it suffices to say for now
that they are top-level bindings which allows us to name expressions.
We can then use those names to refer to them multiple times without
copying and pasting the expressions.

The following are all expressions:

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 6

1

1 + 1

"Icarus"

Each can be examined in the GHCi REPL by entering the code
at the prompt, then hitting ‘enter’ to see the result of evaluating
the expression. The numeric value 1, for example, has no further
reduction step, so it stands for itself.

If you haven’t already, open up your terminal and get your REPL
going to start following along with the code examples.

When we enter this into GHCi:

Prelude> 1

1

We see 1 printed because it cannot be reduced any further.
In the next example, GHCi reduces the expression 1 + 2 to 3, then

prints the number 3. The reduction terminates with the value 3
because there are no more terms to evaluate:

Prelude> 1 + 2

3

Expressions can be nested in numbers limited only by ourwilling-
ness to take the time to write them down, much like in arithmetic:

Prelude> (1 + 2) * 3

9

Prelude> ((1 + 2) * 3) + 100

109

You can keep expanding on this, nesting as many expressions as
you’d like and evaluating them. But, we don’t have to limit ourselves
to expressions such as these.

Normal form We say that expressions are in normal formwhen there
are no more evaluation steps that can be taken, or, put differently,
when they’ve reached an irreducible form. The normal form of 1 + 1

is 2. Why? Because the expression 1 + 1 can be evaluated or reduced
by applying the addition operator to the two arguments. In other

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 7

words, 1 + 1 is a reducible expression, while 2 is an expression but is
no longer reducible — it can’t evaluate into anything other than itself.
Reducible expressions are also called redexes. While we will generally
refer to this process as evaluation or reduction, you may also hear it
called “normalizing” or “executing” an expression, though these are
somewhat imprecise.

2.4 Functions

Expressions are the most basic unit of a Haskell program, and func-
tions are a specific type of expression. Functions in Haskell are
related to functions in mathematics, which is to say they map an
input or set of inputs to an output. A function is an expression that
is applied to an argument and always returns a result. Because they
are built purely of expressions, they will always evaluate to the same
result when given the same values.

As in the lambda calculus, all functions in Haskell take one ar-
gument and return one result. The way to think of this is that, in
Haskell, when it seems we are passing multiple arguments to a func-
tion, we are actually applying a series of nested functions, each to
one argument. This is called currying, and it will be addressed in
greater detail later.

You may have noticed that the expressions we’ve looked at so far
use literal values with no variables or abstractions. Functions allow
us to abstract the parts of code we’d want to reuse for different literal
values. Instead of nesting addition expressions, for example, we
could write a function that would add the value we wanted wherever
we called that function.

For example, say you had a bunch of simple expressions you
needed to multiply by 3. You could keep entering them as individual
expressions like this:

Prelude> (1 + 2) * 3

9

Prelude> (4 + 5) * 3

27

Prelude> (10 + 5) * 3

45

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 8

But you don’t want to do that. Functions are how we factor out
the pattern into something we can reuse with different inputs. You
do that by naming the function and introducing an independent
variable as the argument to the function. Functions can also appear
in the expressions that form the bodies of other functions or be used
as arguments to functions, just as any other value can be.

In this case, we have a series of expressions that we want to mul-
tiply by 3. Let’s think in terms of a function: what part is common
to all the expressions? What part varies? We know we have to give
functions a name and apply them to an argument, so what could we
call this function and what sort of argument might we apply it to?

The common pattern is the * 3 bit. The part that varies is the
addition expression before it, so we will make that a variable. We
will name our function and apply it to the variable. When we input a
value for the variable, our function will evaluate that, multiply it by
3, and return a result. In the next section, we will formalize this into
a proper Haskell function.

Defining functions

Function definitions all share a few things in common. First, they
start with the name of the function. This is followed by the formal
parameters3 of the function, separated only bywhite space. Next there
is an equal sign, which expresses equality of the terms. Finally there
is an expression that is the body of the function and can be evaluated
to return a value.

Defining functions in a normal Haskell source code file and in
GHCi are a little different. To introduce definitions of values or
functions in GHCi you must use let, which looks like this:

Prelude> let triple x = x * 3

In a source file we would enter it like this:

triple x = x * 3

3 In practice, the terms ‘argument’ and ‘parameter’ are often used interchangeably,
but there is a difference. ‘Argument’ properly refers to the value(s) that are passed
to the function’s parameters when the function is applied, not to the variables that
represent them in the function definition (or those in the type signature). See the
definitions at the end of the chapter for more information.

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 9

Let’s examine each part of that:

triple x = x * 3

-- [1] [2] [3] [4]

1. This is the name of the function we are defining; it is a function
declaration. Note that it begins with a lowercase letter.

2. This is the parameter of the function. The parameters of our
function correspond to the “head” of a lambda and bind vari-
ables that appear in the body expression.

3. The = is used to define (or declare) values and functions. Re-
minder: this is not how we test for equality between two values
in Haskell.

4. This is the body of the function, an expression that could be
evaluated if the function is applied to a value. If triple is applied,
the argument it’s applied to will be the value to which the 𝑥 is
bound. Here the expression x * 3 constitutes the body of the
function. So, if you have an expression like triple 6, 𝑥 is bound
to 6. Since you’ve applied the function, you can also replace the
fully applied function with its body and bound arguments.

Capitalizationmatters! Function names startwith lowercase letters.
Sometimes for clarity in function names, you may want camelCase
style, and that is good style provided the first letter remains lowercase.

Variables must also begin with lowercase letters.

Playing with the triple function First, try entering the triple func-
tion directly into the REPL using let. Now call the function by name
and introduce a numeric value for the 𝑥 argument:

Prelude> triple 2

6

Next, enter the second version (the one without let) into a source
file and save the file. Load it into GHCi, using the :load or :l com-
mand. Once it’s loaded, you can call the function at the prompt
using the function name, triple, followed by a numeric value, just

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 10

as you did in the REPL example above. Try using different values
for 𝑥 — integer values or other arithmetic expressions. Then try
changing the function itself in the source file and reloading it to see
what changes.

2.5 Evaluation

When we talk about evaluating an expression, we’re talking about
reducing the terms until the expression reaches its simplest form.
Once a term has reached its simplest form, we say that it is irre-
ducible or finished evaluating. Usually, we call this a value. Haskell
uses a nonstrict evaluation (sometimes called “lazy evaluation”) strat-
egy which defers evaluation of terms until they’re forced by other
terms referring to them. We will return to this concept several times
throughout the book as it takes time to fully understand.

Values are irreducible, but applications of functions to arguments
are reducible. Reducing an expression means evaluating the terms
until you’re left with a value. As in the lambda calculus, application
is evaluation: applying a function to an argument allows evaluation
or reduction.

Values are expressions, but cannot be reduced further. Values are
a terminal point of reduction:

1

"Icarus"

The following expressions can be reduced (evaluated, if you will)
to a value:

1 + 1

2 * 3 + 1

Each can be evaluated in the REPL, which reduces the expressions
and then prints what it reduced to.

Let’s get back to our triple function. Calling the function by name
and applying it to an argument makes it a reducible expression. In a
pure functional language like Haskell, we can replace applications of
functions with their definitions and get the same result, just like in
math. As a result when we see:

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 11

triple 2

We can know that, since triple is defined as x = x * 3, the expres-
sion is equivalent to:

triple 2

-- [triple x = x * 3; x:= 2]

2 * 3

6

We’ve applied triple to the value 2 and then reduce the expres-
sion to the final result 6. Our expression triple 2 is in canonical or
normal form when it reaches the number 6 because the value 6 has
no remaining reducible expressions.

Haskell doesn’t evaluate everything to canonical or normal form
by default. Instead, it only evaluates to weak head normal form
(WHNF) by default. We’ll get into the details of what that means
somewhat later in the book. For now, we want to emphasize that
Haskell’s nonstrict evaluation means not everything will get reduced
to its irreducible form immediately, so this:

(\f -> (1, 2 + f)) 2

reduces to the following in WHNF:

(1, 2 + 2)

This representation is an approximation, but the key point here
is that 2 + 2 is not evaluated to 4 until the last possible moment.

Exercises: Comprehension Check

1. Given the following lines of code as they might appear in a
source file, how would you change them to use them directly in
the REPL?

half x = x / 2

square x = x * x

2. Write one function that can accept one argument and work for
all the following expressions. Be sure to name the function.

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 12

3.14 * (5 * 5)

3.14 * (10 * 10)

3.14 * (2 * 2)

3.14 * (4 * 4)

3. There is a value in Prelude called pi. Rewrite your function to
use pi instead of 3.14.

2.6 Infix operators

Functions in Haskell default to prefix syntax, meaning that the func-
tion being applied is at the beginning of the expression rather than
the middle. We saw that with our triple function, and we see it with
standard functions such as the identity, or id, function. This function
just returns whatever value it is given as an argument:

Prelude> id 1

1

While this is the default syntax for functions, not all functions
are prefix. There are a group of operators, such as the arithmetic
operators we’ve been using, that are indeed functions (they apply to
arguments to produce an output) but appear by default in an infix
position.

Operators are functions which can be used in infix style. All
operators are functions; not all functions are operators. While triple

and id are prefix functions (not operators), the + function is an infix
operator:

Prelude> 1 + 1

2

Now we’ll try a few other mathematical operators:

Prelude> 100 + 100

200

Prelude> 768395 * 21356345

16410108716275

Prelude> 123123 / 123

1001.0

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 13

Prelude> 476 - 36

440

Prelude> 10 / 4

2.5

You can sometimes use functions infix style, with a small change
in syntax:

Prelude> 10 `div` 4

2

Prelude> div 10 4

2

And you can use infix operators in prefix fashion by wrapping
them in parentheses:

Prelude> (+) 100 100

200

Prelude> (*) 768395 21356345

16410108716275

Prelude> (/) 123123 123

1001.0

If the function name is alphanumeric, it is a prefix function by
default, and not all prefix functions can be made infix. If the name is
a symbol, it is infix by default but can be made prefix by wrapping it
in parentheses.4

Associativity and precedence

As you may remember from your math classes, there’s a default
associativity and precedence to the infix operators (*), (+), (-), and
(/).

We can ask GHCi for information such as associativity and prece-
dence of operators and functions byusing the :info command. When
you ask GHCi for the :info about an operator or function, it provides
the type information It also tells you whether it’s an infix operator,

4For people who like nitpicky details: you cannot make a prefix function into an
infix function using backticks, then wrap that in parentheses and make it into a prefix
function. We’re not clear why you’d want to do that anyway. Cut it out.

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 14

and, if it is, its associativity and precedence. Let’s talk about that asso-
ciativity and precedence briefly. We will elide the type information
and so forth for now.

Here’s what the code in Prelude says for (*), (+), and (-) at time
of writing:

:info (*)

infixl 7 *

-- [1] [2] [3]

:info (+) (-)

infixl 6 +

infixl 6 -

1. infixl means it’s an infix operator, left associative.

2. 7 is the precedence: higher is applied first, on a scale of 0-9.

3. Infix function name: in this case, multiplication.

The information about addition and subtraction tell us they are
both left-associative, infix operators with the same precedence (6).

Let’s play with parentheses and see what it means that these asso-
ciate to the left. Continue to follow along with the code via the REPL:

-- this

2 * 3 * 4

-- is evaluated as if it was

(2 * 3) * 4

-- Because of left-associativity from infixl

Here’s an example of a right-associative infix operator:

Prelude> :info (^)

infixr 8 ^

-- [1] [2] [3]

1. infixr means infix operator, right associative.

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 15

2. 8 is the precedence. Higher precedence, indicated by higher
numbers, is applied first, so this is higher precedence than mul-
tiplication (7), addition, or subtraction (both 6).

3. Infix function name: in this case, exponentiation.

It was hard to tell with multiplication why associativity mattered,
because multiplication is associative. So shifting the parentheses
around never changes the result. Exponentiation, however, is not
associative and thus makes a prime candidate for demonstrating left
vs. right associativity.

Prelude> 2 ^ 3 ^ 4

2417851639229258349412352

Prelude> 2 ^ (3 ^ 4)

2417851639229258349412352

Prelude> (2 ^ 3) ^ 4

4096

As you can see, adding parentheses starting from the right-hand
side of the expression when the operator is right-associative doesn’t
change anything. However, if we parenthesize from the left, we get a
different result when the expression is evaluated.

Your intuitions about precedence, associativity, and parenthesiza-
tion from math classes will generally hold in Haskell:

2 + 3 * 4

(2 + 3) * 4

What’s the difference between these two? Why are they different?

Exercises: Parentheses and Association

Below are some pairs of functions that are alike except for parenthe-
sization. Read them carefully and decide if the parentheses change
the results of the function. Check your work in GHCi.

1. a) 8 + 7 * 9

b) (8 + 7) * 9

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 16

2. a) perimeter x y = (x * 2) + (y * 2)

b) perimeter x y = x * 2 + y * 2

3. a) f x = x / 2 + 9

b) f x = x / (2 + 9)

2.7 Declaring values

The order of declarations in a source code file doesn’t matter because
GHCi loads the entire file at once, so it knows all the values that have
been defined. On the other hand, when you enter them one by one
into the REPL, the order does matter.

For example, we can declare a series of expressions in the REPL
like this:

Prelude> let y = 10

Prelude> let x = 10 * 5 + y

Prelude> let myResult = x * 5

As we saw above with the triple function, we have to use let to
declare something in the REPL.

We can now type the names of the values and hit enter to see their
values:

Prelude> x

60

Prelude> y

10

Prelude> myResult

300

To declare the same values in a file, such as learn.hs, we write the
following:

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 17

-- learn.hs

module Learn where

-- First, we declare the name of our module so

-- it can be imported by name in a project.

-- We won't be doing a project of this size

-- for a while yet.

x = 10 * 5 + y

myResult = x * 5

y = 10

Remember module names are capitalized, unlike variable names.
Also, in this variable name, we’ve used camelCase: the first letter is
still lowercase, but we use an uppercase to delineate a word boundary
for readability.

Troubleshooting

It is easy to make mistakes in the process of typing learn.hs into your
editor. We’ll look at a few common mistakes in this section. One
thing to keep in mind is that indentation of Haskell code is significant
and can change the meaning of the code. Incorrect indentation of
code can also break your code. Reminder: use spaces, not tabs, to
indent your source code.

In general, whitespace is significant in Haskell. Efficient use of
whitespace makes the syntax more concise. This can take some
getting used to if you’ve been working in another programming
language. Whitespace is often the only mark of a function call, unless
parentheses are necessary due to conflicting precedence. Trailing
whitespace, that is, extraneous whitespace at the end of lines of code,
is considered bad style.

In source code files, indentation often replaces syntactic markers
like curly brackets, semicolons, and parentheses. The basic rule is
that code that is part of an expression should be indented under
the beginning of that expression, even when the beginning of the

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 18

expression is not at the leftmost margin. Furthermore, parts of the
expression that are grouped should be indented to the same level.
For example, in a block of code introduced by let or do, you might
see something like this:

let

x = 3

y = 4

-- or

let x = 3

y = 4

-- Note that this code won't work directly in a

-- source file without embedding in a

-- top-level declaration

Notice that the two definitions that are part of the expression line
up in either case. It is incorrect to write:

let x = 3

y = 4

-- or

let

x = 3

y = 4

If you have an expression that has multiple parts, your indentation
will follow a pattern like this:

foo x =

let y = x * 2

z = x ^ 2

in 2 * y * z

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 19

Notice that the definitions of 𝑦 and 𝑧 line up, and the definitions
of let and in are also aligned. As you work through the book, try to
pay careful attention to the indentation patterns as we have them
printed. There are many cases where improper indentation will
actually cause code not to work. Indentation can easily go wrong in
a copy-and-paste job as well.

Also, when you write Haskell code, we reiterate here that you want
to use spaces and not tabs for indentation. Using spaces will save you
a nontrivial amount of grief. Most text editors can be configured to
use only spaces for indentation, so you may want to investigate how
to do that for yours.

If you make a mistake like breaking up the declaration of 𝑥 such
that the rest of the expression began at the beginning of the next
line:

module Learn where

-- First declare the name of our module so it

-- can be imported by name in a project.

-- We won't do this for a while yet.

x = 10

* 5 + y

myResult = x * 5

y = 10

You might see an error like:

Prelude> :l code/learn.hs

[1 of 1] Compiling Learn

code/learn.hs:10:1: parse error on input ‘*’

Failed, modules loaded: none.

Note that the first line of the error message tells you where the
error occurred: code/learn.hs:10:1 indicates that the mistake is in
line 10, column 1, of the named file. That can make it easier to find
the problem that needs to be fixed. Please note that the exact line

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 20

and column numbers in your own error messages might be different
from ours, depending on how you’ve entered the code into the file.

The way to fix this is to either put it all on one line, like this:

x = 10 * 5 + y

or to make certainwhenyou break up lines of code that the second
line begins at least one space from the beginning of that line (either
of the following should work):

x = 10

* 5 + y

-- or

x = 10

* 5 + y

The second one looks a little better. Generally, you should reserve
breaking up of lines for when you have code exceeding 100 columns
in width.

Another possible error is not starting a declaration at the begin-
ning (left) column of the line:

-- learn.hs

module Learn where

x = 10 * 5 + y

myResult = x * 5

y = 10

See that space before 𝑥? That will cause an error like:

Prelude> :l code/learn.hs

[1 of 1] Compiling Learn

code/learn.hs:11:1: parse error on input ‘myResult’

Failed, modules loaded: none.

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 21

This may confuse you, as myResult is notwhere you need to modify
your code. The error is only an extraneous space, but all declarations
in the module must start at the same column. The column that all
declarations within a module must start in is determined by the first
declaration in the module. In this case, the error message gives a
location that is different from where you should fix the problem
because all the compiler knows is that the declaration of 𝑥 made a
single space the appropriate indentation for all declarations within
that module, and the declaration of myResult began a column too
early.

It is possible to fix this error by indenting the myResult and 𝑦 dec-
larations to the same level as the indented 𝑥 declaration:

-- learn.hs

module Learn where

x = 10 * 5 + y

myResult = x * 5

y = 10

However, this is considered bad style and is not standard Haskell
practice. There is almost never a good reason to indent all your
declarations in this way, but noting this gives us some idea of how
the compiler is reading the code. It is better, when confronted with
an error message like this, to make sure that your first declaration is
at the leftmost margin and proceed from there.

Another possible mistake is that you might’ve missed the second
- in the -- used to comment out source lines of code.

So this code:

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 22

- learn.hs

module Learn where

-- First declare the name of our module so it

-- can be imported by name in a project.

-- We won't do this for a while yet.

x = 10 * 5 + y

myResult = x * 5

y = 10

will cause this error:

code/learn.hs:7:1: parse error on input ‘module’

Failed, modules loaded: none.

Note again that it says the parse error occurred at the beginning
of the module declaration, but the issue is actually that - learn.hs

had only one - when it needed two to form a syntactically correct
Haskell comment.

Nowwe can see how to work with code that is saved in a source file
from GHCi without manually copying and pasting the definitions
into our REPL. Assuming we open our REPL in the same directory
as we have learn.hs saved, we can do the following:

Prelude> :load learn.hs

[1 of 1] Compiling Learn

Ok, modules loaded: Learn.

Prelude> x

60

Prelude> y

10

Prelude> myResult

300

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 23

Exercises: Heal the Sick

The following code samples are broken and won’t compile. The first
two are as you might enter into the REPL; the third is from a source
file. Find the mistakes and fix them so that they will.

1. let area x = 3. 14 * (x * x)

2. let double x = b * 2

3. x = 7

y = 10

f = x + y

2.8 Arithmetic functions in Haskell

This section will explore some basic arithmetic using some common
operators and functions for arithmetic. We’ll focus on the following
subset of them:

Operator Name Purpose/application
+ plus addition
- minus subtraction
* asterisk multiplication
/ slash fractional division
div divide integral division, round down
mod modulo like ‘rem’, but after modular division
quot quotient integral division, round towards zero
rem remainder remainder after division

At the risk of stating the obvious, “integral” division refers to
division of integers. Because it’s integral and not fractional, it takes
integers as arguments and returns integers as results. That’s why the
results are rounded.

Here’s an example of each in the REPL:

Prelude> 1 + 1

2

Prelude> 1 - 1

0

Prelude> 1 * 1

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 24

1

Prelude> 1 / 1

1.0

Prelude> div 1 1

1

Prelude> mod 1 1

0

Prelude> quot 1 1

1

Prelude> rem 1 1

0

You will usually want div for integral division unless you know
what you’re doing, due to the way div and quot round:

-- rounds down

Prelude> div 20 (-6)

-4

-- rounds toward zero

Prelude> quot 20 (-6)

-3

Also, rem and mod have slightly different use cases; we’ll look at mod
in a little more detail down below. We will cover (/) in more detail
in a later chapter, as that will require some explanation of types and
typeclasses.

Laws for quotients and remainders

Programming often makes use of more division and remainder func-
tions than standard arithmetic does, and it’s helpful to be familiar
with the laws about quot/rem and div/mod.5We’ll take a look at those
here.

(quot x y)*y + (rem x y) == x

(div x y)*y + (mod x y) == x

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 25

We won’t walk through a proof exercise, but we can demonstrate
these laws a bit:

(quot x y)*y + (rem x y)

Given x is 10 and y is (-4)

(quot 10 (-4))*(-4) + (rem 10 (-4))

quot 10 (-4) == (-2) and rem 10 (-4) == 2

(-2)*(-4) + (2) == 10

10 == x == yeppers.

It’s not worth getting overly invested in the meaning of “yeppers”
there; it just means we got to the result we wanted.

Now for div and mod:

(div x y)*y + (mod x y)

Given x is 10 and y is (-4)

(div 10 (-4))*(-4) + (mod 10 (-4))

div 10 (-4) == (-3) and mod 10 (-4) == -2

(-3)*(-4) + (-2) == 10

10 == x == yeppers.

Our result indicates all is well in the world of integral division.

Using ‘mod‘

This section is not a full discussion of modular arithmetic, but we
want to give more direction in how to use mod in general, for thosewho
may be unfamiliar with it, and how it works in Haskell specifically.

5 From Lennart Augustsson’s blog http://augustss.blogspot.com/ or Stack Overflow
answer at http://stackoverflow.com/a/8111203

http://augustss.blogspot.com/
http://stackoverflow.com/a/8111203

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 26

We’ve already mentioned that mod gives the remainder of a mod-
ular division. If you’re not already familiar with modular division,
you may not understand the useful difference between mod and rem.

Modular arithmetic is a system of arithmetic for integers where
numbers “wrap around” upon reaching a certain value, called the
modulus. It is often explained in terms of a clock.

When we count time by a 12-hour clock, we have to wrap the
counting around the 12. For example, if the time is now 8:00 and
you want to know what time it will be 8 hours from now, you don’t
simply add 8 + 8 and get a result of 16 o’clock.6

Instead, you wrap the count around every 12 hours. So, adding 8
hours to 8:00 means that we add 4 hours to get to the 12, and at the
12 we start over again as if it’s 0 and add the remaining 4 hours of
our 8, for an answer of 4:00. That is, 8 hours after 8:00 is 4:00.

This is arithmeticmodulo 12. In our 12-hour clock, 12 is equivalent
to both itself and to 0, so the time at 12:00 is also, in some sense 0:00.
Arithmetic modulo 12 means that 12 is both 12 and 0.

Often, this will give you the same answer that rem does:

Prelude> mod 15 12

3

Prelude> rem 15 12

3

Prelude> mod 21 12

9

Prelude> rem 21 12

9

Prelude> mod 3 12

3

Prelude> rem 3 12

3

If you’re wondering what the deal is with the last two examples,
it’s because mod and rem can only represent integral division. If all

6Obviously, with a 24-hour clock, such a time is possible; however, if we were
starting from 8:00 p.m. and trying to find the time 8 hours later, the answer would
not be 16:00 a.m. A 24-hour clock has a different modulus than a 12-hour clock.

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 27

you have to work with is integers, then dividing a smaller number
by a larger number results in an answer of 0 with a remainder of
whatever the smaller number (the dividend) is. If you want to divide
a smaller number by a larger number and return a fractional answer,
then you need to use (/), and you won’t have a remainder.

Let’s say we need to write a function that will determine what day
of the week it was or will be a certain number of days before or after
this one. For our purposes here, we will assign a number to each day
of the week, using 0 to represent Sunday.7 Then if today is Monday,
and we want to know what day of the week it will be 23 days from
now, we could do this:

Prelude> mod (1 + 23) 7

3

The 1 represents Monday, the current day, while 23 is the number
of days we’re trying to add. Using mod to wrap it around the 7 means
it will return a number that corresponds to a day of the week in our
numbering.

And 5 days from Saturday will be Thursday:

Prelude> mod (6 + 5) 7

4

We can use rem to do the same thing with apparently equivalent
accuracy:

Prelude> rem (1 + 23) 7

3

However, if we want to subtract and find out what day of the week
it was some number of days ago, then we’ll see a difference. Let’s try
asking, if today is Wednesday (3), what day it was 12 days ago:

Prelude> mod (3 - 12) 7

5

Prelude> rem (3 - 12) 7

-2

7 Sure, you may naturally think of the days of week as being numbered 1-7. But
programmers like to index things from zero.

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 28

Theversionwith mod gives us a correct answer,while the remversion
does not.

One key difference here is that, in Haskell (not in all languages), if
one or both arguments are negative, the results of mod will have the
same sign as the divisor, while the result of rem will have the same
sign as the dividend:

Prelude> (-5) `mod` 2

1

Prelude> 5 `mod` (-2)

-1

Prelude> (-5) `mod` (-2)

-1

-- but

Prelude> (-5) `rem` 2

-1

Prelude> 5 `rem` (-2)

1

Prelude> (-5) `rem` (-2)

-1

Figuring out when you need mod takes some experience, and it
may not be obvious right now. But you will need it later in the book.

Negative numbers

Due to the interaction of parentheses, currying, and infix syntax,
negative numbers get special treatment in Haskell.

If you want a value that is a negative number by itself, this will
work just fine:

Prelude> -1000

-1000

However, this will not work in some cases:

Prelude> 1000 + -9

<interactive>:3:1:

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 29

Precedence parsing error

cannot mix ‘+’ [infixl 6] and

prefix `-` [infixl 6]

in the same infix expression

Fortunately, we were told about our mistake before any of our
codewas executed. Note how the errormessage tells you the problem
has to do with precedence. Addition and subtraction have the same
precedence (6), and GHCi thinks we are trying to add and subtract,
not add a negative number, so it doesn’t know how to resolve the
precedence and evaluate the expression. We need to make a small
change before we can add a positive and a negative number together:

Prelude> 1000 + (-9)

991

The negation of numbers in Haskell by the use of a unary - is a
form of syntactic sugar. Syntax is the grammar and structure of the
text we use to express programs, and syntactic sugar is a means for
us to make that text easier to read and write. Syntactic sugar can
make the typing or reading of code nicer but changes nothing about
the semantics, or meaning, of programs and doesn’t change how we
solve problems in code. Typically when code with syntactic sugar is
processed by our REPL or compiler, a simple transformation from
the shorter (“sweeter”) form to a more verbose, truer representation
is performed after the code has been parsed.

In the specific case of -, the syntactic sugarmeans the operatornow
has two possible interpretations. The two possible interpretations of
the syntactic - are that - is being used as an alias for negate or that it
is the subtraction function. The following are semantically identical
(that is, theyhave the samemeaning, despite different syntax) because
the - is translated into negate:

Prelude> 2000 + (-1234)

766

Prelude> 2000 + (negate 1234)

766

Whereas this is - being used for subtraction:

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 30

Prelude> 2000 - 1234

766

Fortunately, syntactic overloading like this isn’t common inHaskell.

2.9 Parenthesization

Here we’ve listed the information that GHCi gives us for various infix
operators. We have left the type signatures in this time, although it
is not directly relevant at this time. This will give you a chance to
look at the types if you’re curious and also provide a more accurate
picture of the :info command.

Prelude> :info (^)

(^) :: (Num a, Integral b) => a -> b -> a

infixr 8 ^

Prelude> :info (*)

class Num a where

(*) :: a -> a -> a

infixl 7 *

Prelude> :info (+)

class Num a where

(+) :: a -> a -> a

infixl 6 +

Prelude> :info (-)

class Num a where

(-) :: a -> a -> a

infixl 6 -

Prelude> :info ($)

($) :: (a -> b) -> a -> b

infixr 0 $

We should take a moment to explain and demonstrate the ($)

operator as you will run into it fairly frequently in Haskell code.
The good news is it does almost nothing. The bad news is this fact
sometimes trips people up.

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 31

First, here’s the definition of ($):

f $ a = f a

Immediately this seems a bit pointless until we remember that
it’s defined as an infix operator with the lowest possible precedence.
The ($) operator is a convenience for when you want to express
something with fewer pairs of parentheses:

Prelude> (2^) (2 + 2)

16

-- can replace those parentheses

Prelude> (2^) $ 2 + 2

16

-- without either parentheses or $

Prelude> (2^) 2 + 2

6

The ($) will allow everything to the right of it to be evaluated first
and can be used to delay function application. You’ll see what we
mean about delaying function application in particular when we get
to Chapter 7 and use it with function composition.

Also note that you can stack up multiple uses of ($) in the same
expression. For example, this works:

Prelude> (2^) $ (+2) $ 3*2

256

But this does not:

Prelude> (2^) $ 2 + 2 $ (*30)

-- A rather long and ugly type error about trying to

-- use numbers as if they were functions follows.

We can see for ourselves why this code doesn’t make sense if we
examine the reduction steps.

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 32

-- Remember ($)'s definition

f $ a = f a

(2^) $ 2 + 2 $ (*30)

-- Given the right-associativity (infixr) of $

-- we must begin at the right-most position.

2 + 2 $ (*30)

-- reduce ($)

(2 + 2) (*30)

-- then we must evaluate (2 + 2) before we can apply it

4 (*30)

-- This doesn't make sense! We can't apply 4

-- as if it was a function to the argument (*30)!

Now let’s flip that expression around a bit so it works and then
walk through a reduction:

(2^) $ (*30) $ 2 + 2

-- must evaluate right-side first

(2^) $ (*30) $ 2 + 2

-- application of the function (*30) to the

-- expression (2 + 2) forces evaluation

(2^) $ (*30) 4

-- then we reduce (*30) 4

(2^) $ 120

-- reduce ($) again.

(2^) 120

-- reduce (2^)

1329227995784915872903807060280344576

Some Haskellers find parentheses more readable than the dollar
sign, but it’s too common in idiomatic Haskell code for you to not at
least be familiar with it.

Parenthesizing infix operators

There are times when you want to refer to an infix function without
applying any arguments, and there are also times when you want to
use them as prefix operators instead of infix. In both cases you must

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 33

wrap the operator in parentheses. We will see more examples of the
former case later in the book. For now, let’s look at how we use infix
operators as prefixes.

If your infix function is >> then you must write (>>) to refer to it
as a value. (+) is the addition infix function without any arguments
applied yet and (+1) is the same addition function but with one
argument applied, making it return the next argument it’s applied
to plus one:

Prelude> 1 + 2

3

Prelude> (+) 1 2

3

Prelude> (+1) 2

3

The last case is known as sectioning and allows you to pass around
partially applied functions. With commutative functions, such as
addition, it makes no difference if you use (+1) or (1+) because the
order of the arguments won’t change the result.

If you use sectioning with a function that is not commutative, the
order matters:

Prelude> (1/) 2

0.5

Prelude> (/1) 2

2.0

Subtraction, (-), is a special case. These will work:

Prelude> 2 - 1

1

Prelude> (-) 2 1

1

The following, however, won’t work:

Prelude> (-2) 1

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 34

Enclosing a value inside the parentheses with the - indicates to
GHCi that it’s the argument of a function. Because the - function
represents negation, not subtraction, when it’s applied to a single
argument, GHCi does not know what to do with that, and so it re-
turns an error message. Here, - is a case of syntactic overloading
disambiguated by how it is used.

You can use sectioning for subtraction, but it must be the first
argument:

Prelude> let x = 5

Prelude> let y = (1 -)

Prelude> y x

-4

Or you instead of (- x), you can write (subtract x):

Prelude> (subtract 2) 3

1

It may not be immediately obvious why you would ever want
to do this, but you will see this syntax used throughout the book,
for example, once we start wanting to apply functions to each value
inside a list or other data structure. We will discuss partial application
of functions in more detail in a later chapter as well.

2.10 Let and where

You will often see let and where used to introduce components of
expressions, and they seem similar. It takes some practice to get used
to the appropriate times to use each, but they are fundamentally
different.

The contrast here is that let introduces an expression, so it can be
used wherever you can have an expression, but where is a declaration
and is bound to a surrounding syntactic construct.

We’ll start with an example of where:

-- FunctionWithWhere.hs

module FunctionWithWhere where

printInc n = print plusTwo

where plusTwo = n + 2

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 35

And if we use this in the REPL:

Prelude> :l FunctionWithWhere.hs

[1 of 1] Compiling FunctionWithWhere ...

Ok, modules loaded: FunctionWithWhere.

Prelude> printInc 1

3

Prelude>

Nowwe have the same function, but using let in the place of where:

-- FunctionWithLet.hs

module FunctionWithLet where

printInc2 n = let plusTwo = n + 2

in print plusTwo

When you see let followed by in, you’re looking at a let expression.
Here’s that function in the REPL:

Prelude> :load FunctionWithLet.hs

[1 of 1] Compiling FunctionWithLet ...

Ok, modules loaded: FunctionWithLet.

Prelude> printInc2 3

5

If you loaded FunctionWithLet in the sameREPLsession as FunctionWithWhere,
then it will have unloaded the first one before loading the new one:

Prelude> :load FunctionWithWhere.hs

[1 of 1] Compiling FunctionWithWhere ...

Ok, modules loaded: FunctionWithWhere.

Prelude> printInc 1

3

Prelude> :load FunctionWithLet.hs

[1 of 1] Compiling FunctionWithLet ...

Ok, modules loaded: FunctionWithLet.

Prelude> printInc2 10

12

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 36

Prelude> printInc 10

<interactive>:6:1:

Not in scope: ‘printInc’

Perhaps you meant ‘printInc2’ (line 4)

printInc isn’t in scope anymore because GHCi unloaded every-
thingyou’d defined or loaded afteryouused :load to load the FunctionWithLet.hs

source file. Scope is the area of source code where a binding of a
variable applies.

That is one limitation of the :load command in GHCi. As we build
larger projects that require having multiple modules in scope, we
will use a project manager called Stack rather than GHCi itself.

Exercises: A Head Code

Now for some exercises. First, determine in your head what the
following expressions will return, then validate in the REPL:

1. let x = 5 in x

2. let x = 5 in x * x

3. let x = 5; y = 6 in x * y

4. let x = 3; y = 1000 in x + 3

Above, you entered some let expressions into your REPL to eval-
uate them. Now, we’re going to open a file and rewrite some let

expressions using where declarations. You will have to give the value
you’re binding a name, although the name can be just a letter if you
like. For example,

-- this should work in GHCi

let x = 5; y = 6 in x * y

could be rewritten as

-- put this in a file

mult1 = x * y

where x = 5

y = 6

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 37

Making the equals signs line up is a stylistic choice. As long as
things are nested in that way, the equals signs do not have to line up.
But notice we use a name that we will use to refer to this value in the
REPL:

Prelude> :l practice.hs

[1 of 1] Compiling Main

Ok, modules loaded: Main.

*Main> mult1

30

The prompt changes to *Main instead of Prelude to indicate that
you have a module called Main loaded.

Rewrite with where clauses:

1. let x = 3; y = 1000 in x * 3 + y

2. let y = 10; x = 10 * 5 + y in x * 5

3. let x = 7; y = negate x; z = y * 10 in z / x + y

Note: the filename you choose is unimportant except for the .hs
extension.

2.11 Chapter Exercises

The goal for all the following exercises is just to get you playing with
code and forming hypotheses about what it should do. Read the code
carefully, using what we’ve learned so far. Generate a hypothesis
about what you think the code will do. Play with it in the REPL and
find out where you were right or wrong.

Parenthesization

Given what we know about the precedence of (*), (+), and (^), how
can we parenthesize the following expressions more explicitly with-
out changing their results? Put together an answer you think is cor-
rect, then test in the GHCi REPL.

Example:

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 38

-- We want to make this more explicit

2 + 2 * 3 - 3

-- this will produce the same result

2 + (2 * 3) - 3

Attempt the above on the following expressions.

1. 2 + 2 * 3 - 1

2. (^) 10 $ 1 + 1

3. 2 ^ 2 * 4 ^ 5 + 1

Equivalent expressions

Which of the following pairs of expressions will return the same
result when evaluated? Try to reason them out in your head by
reading the code and then enter them into the REPL to check your
work:

1. 1 + 1

2

2. 10 ^ 2

10 + 9 * 10

3. 400 - 37

(-) 37 400

4. 100 `div` 3

100 / 3

5. 2 * 5 + 18

2 * (5 + 18)

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 39

More fun with functions

Here is a bit of code as it might be entered into a source file. Remem-
ber thatwhenyouwrite code in a source file, the order is unimportant,
but when writing code directly into the REPL the order does mat-
ter. Given that, look at this code and rewrite it such that it could be
evaluated in the REPL (remember: you’ll need let when entering it
directly into the REPL). Be sure to enter your code into the REPL to
make sure it evaluates correctly.

z = 7

x = y ^ 2

waxOn = x * 5

y = z + 8

1. Now you have a value called waxOn in your REPL. What do you
think will happen if you enter:

10 + waxOn

-- or

(+10) waxOn

-- or

(-) 15 waxOn

-- or

(-) waxOn 15

2. Earlier we looked at a function called triple. While your REPL
has waxOn in session, re-enter the triple function at the prompt:

let triple x = x * 3

3. Now, what will happen if we enter this at our GHCi prompt. Try
to reason out what you think will happen first, considering what
role waxOn is playing in this function call. Then enter it, see what
does happen, and check your understanding:

triple waxOn

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 40

4. Rewrite waxOn as an expression with a where clause in your source
file. Load it into your REPL and make sure it still works as
expected!

5. Now to the same source file where you have waxOn, add the triple

function. Remember: You don’t need let and the function name
should be at the left margin (that is, not nested as one of the
waxOn expressions). Make sure it works by loading it into your
REPL and then entering triple waxOn again at the REPL prompt.
You should have the same answer as you did above.

6. Now, without changing what you’ve done so far in that file, add
a new function called waxOff that looks like this:

waxOff x = triple x

7. Load the source file into your REPL and enter waxOff waxOn at
the prompt.

You now have a function, waxOff that can be applied to a variety
of arguments — not just waxOn but any (numeric) value you want
to put in for 𝑥. Play with that a bit. What is the result of waxOff
10 or waxOff (-50)? Try modifying your waxOff function to do
something new— perhaps youwant to first triple the 𝑥 value and
then square it or divide it by 10. Just spend some time getting
comfortable with modifying the source file code, reloading it,
and checking your modification in the REPL.

2.12 Definitions

1. The terms argument and parameter are often used interchange-
ably. However, it is worthwhile to understand the distinction.
A parameter, or formal parameter, represents a value that will
be passed to the function when the function is called. Thus,
parameters are usually variables. An argument is an input value
the function is applied to. A function’s parameter is bound to
the value of an argument when the function is applied to that
argument. For example, in f x = x + 2which takes an argument
and returns that value added to 2, 𝑥 is the one parameter of our
function. We run the code by applying 𝑓 to some argument. If
the argument we passed to the parameter 𝑥 were 2, our result

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 41

would be 4. However, arguments can themselves be variables
or be expressions that include variables, thus the distinction is
not always clear. When we use “parameter” in this book, it will
always be referring to formal parameters, usually in a type signa-
ture, but we’ve taken the liberty of using “argument” somewhat
more loosely.

2. An expression is a combination of symbols that conforms to syn-
tactic rules and can be evaluated to some result. In Haskell, an
expression is a well-structured combination of constants, vari-
ables, and functions. While irreducible constants are technically
expressions, we usually refer to those as “values”, so we usually
mean “reducible expression” when we use the term expression.

3. A redex is a reducible expression.

4. A value is an expression that cannot be reduced or evaluated any
further. 2 * 2 is an expression, but not a value, whereas what it
evaluates to, 4, is a value.

5. A function is a mathematical object whose capabilities are lim-
ited to being applied to an argument and returning a result.
Functions can be described as a list of ordered pairs of their
inputs and the resulting outputs, like a mapping. Given the
function f x = x + 2 applied to the argument 2, we would have
the ordered pair (2, 4) of its input and output.

6. Infix notation is the style used in arithmetic and logic. Infix
means that the operator is placed between the operands or
arguments. An example would be the plus sign in an expression
like 2 + 2.

7. Operators are functions that are infix by default. In Haskell,
operators must use symbols and not alphanumeric characters.

8. Syntactic sugar is syntax within a programming language de-
signed to make expressions easier to write or read.

2.13 Follow-up resources

1. Haskell wiki article on Let vs. Where
https://wiki.haskell.org/Let_vs._Where

https://wiki.haskell.org/Let_vs._Where

CHAPTER 2. BASIC EXPRESSIONS AND FUNCTIONS 42

2. How to desugar Haskell code; Gabriel Gonzalez

Chapter 3

Strings

Like punning, programming
is a play on words

Alan Perlis

43

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 44

3.1 Printing strings

So far we’ve been doing arithmetic using simple expressions. In this
chapter, we will turn our attention to a different type of data called
String.

Most programming languages refer to the data structures used to
contain text as “strings,” usually represented as sequences, or lists, of
characters. In this section, we will

• take an introductory look at types to understand the data struc-
ture called String;

• talk about the special syntax, or syntactic sugar, used for strings;

• print strings in the REPL environment;

• workwith some standard functions that operate on this datatype.

3.2 A first look at types

First, since we will be working with strings, we want to start by un-
derstanding what these data structures are in Haskell as well as a bit
of special syntax we use for them. We haven’t talked much about
types yet, although you saw some examples of them in the last chap-
ter. Types are important in Haskell, and the next two chapters are
entirely devoted to them.

Types are a way of categorizing values. There are several types
for numbers, for example, depending on whether they are integers,
fractional numbers, etc. There is a type for boolean values, specif-
ically the values True and False. The typeswe are primarily concerned
with in this chapter are Char ‘character’ and String. Strings are lists of
characters.

It is easy to find out the type of a value, expression, or function in
GHCi. We do this with the :type command.

Open up your REPL, enter :type 'a' at the prompt, and you
should see something like this:

Prelude> :type 'a'

'a' :: Char

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 45

We need to highlight a few things here. First, we’ve enclosed our
character in single quotes. This lets GHCi know that the character is
not a variable. If you enter :type a instead, it will think it’s a variable
and give you an error message that the 𝑎 is not in scope. That is, the
variable 𝑎 hasn’t been defined (is not in scope), so it has no way to
know what the type of it is.

Second, the :: symbol is read as “has the type.” You’ll see this
often in Haskell. Whenever you see that double colon, you know
you’re looking at a type signature. A type signature is a line of code
that defines the types for a value, expression, or function.

And, finally, there is Char, the type. Char is the type that includes
alphabetic characters, unicode characters, symbols, etc. So, asking
GHCi :type 'a', that is, “what is the type of ’a’?”, gives us the informa-
tion, 'a' :: Char, that is, “’a’ has the type of Char.”

Now, let’s try a string of text. This time we have to use double
quotation marks, not single, to tell GHCi we have a string, not a single
character:

Prelude> :type "Hello!"

"Hello!" :: [Char]

We have something new in the type information. The square
brackets around Char here are the syntactic sugar for a list. String is a
type alias, or type synonym, for a list of Char. A type alias is what it
sounds like: we use one name for a type, usually for convenience, that
has a different type name underneath. Here String is another name
for a list of characters. Byusing the name Stringwe are able to visually
differentiate it from other types of lists, and names themselves don’t
mean much to the computer. When we talk about lists in more detail
later, we’ll see why the square brackets are considered syntactic sugar;
for now, we just need to understand that GHCi says “Hello!” has the
type list of Char.

3.3 Printing simple strings

Now, let’s see how to print strings of text in the REPL:

Prelude> print "hello world!"

"hello world!"

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 46

Here we’ve used the command print to tell GHCi to print the
string to the display, so it does, with the quotation marks still around
it.

Other commands we can use to tell GHCi to print strings of text
into the display have slightly different results:

Prelude> putStrLn "hello world!"

hello world!

Prelude>

Prelude> putStr "hello world!"

hello world!Prelude>

You can probably see that putStr and putStrLn are similar to each
other, with one key difference. We also notice that both of these
commands print the string to the display without the quotation
marks. This is because, while they are superficially similar to print,
they actually have a different type than print does. Functions that
are similar on the surface can behave differently depending on the
type or category they belong to.

Next, let’s take a look at how to do these things from source files.
Type the following into a file named print1.hs:

-- print1.hs

module Print1 where

main :: IO ()

main = putStrLn "hello world!"

Here’s what you should see when you load it in GHCi and run
main:

Prelude> :l print1.hs

[1 of 1] Compiling Print1

Ok, modules loaded: Print1.

*Print1> main

hello world!

*Print1>

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 47

First, note that your Prelude> prompt may have changed to reflect
the name of the module you loaded. You can use :module or :m to
unload the module and return to Prelude if you wish. You can also
set your prompt to something specific, which means it won’t change
every time you load or unload a module1:

Prelude> :set prompt "λ> "

λ> :r

Ok, modules loaded: Print1.

λ> main

hello world!

λ>

Looking at the code again, main is the default action when you
build an executable or run it in a REPL. It is not a function but is
often a series of instructions to execute, which can include applying
functions and producing side-effects. When building a project with
Stack, having a main executable in a Main.hs file is obligatory, but you
can have source files and load them in GHCi without necessarily
having a main block.

As you can see, main has the type IO (). IO stands for input/output
but has a specialized meaning in Haskell. It is a special type used
when the result of running the program involves effects in addition
to being a function or expression. Printing to the screen is an effect,
so printing the output of a module must be wrapped in this IO type.
When you enter functions directly into the REPL, GHCi implicitly
understands and implements IO without you having to specify that.
Since the main action is the default executable, you will see it in a lot
of source files that we build from here on out. We will explain its
meaning in more detail in a later chapter.

Let’s start another file:

1You can set it permanently if you prefer by setting the configuration in your
/.ghci file

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 48

-- print2.hs

module Print2 where

main :: IO ()

main = do

putStrLn "Count to four for me:"

putStr "one, two"

putStr ", three, and"

putStrLn " four!"

This do syntax is a special syntax that allows for sequencing actions.
It is most commonly used to sequence the actions that constitute
your program, some of which will necessarily perform effects such
as printing to the screen (that’s why the obligatory type of main is IO

()). The do isn’t strictly necessary, but since it often makes for more
readable code than the alternatives, you’ll see it a lot. We will explain
it a bit more in Chapter 13, and there will be a full explanation in the
chapter on Monad.

Here’s what you should see when you run this one:

Prelude> :l print2.hs

[1 of 1] Compiling Print2

Ok, modules loaded: Print2.

Prelude> main

Count to four for me:

one, two, three, and four!

Prelude>

For a bit of fun, change the invocations of putStr to putStrLn and
vice versa. Rerun the program and see what happens.

You’ll note the putStrLn function prints to the current line, then
starts a new line, where putStr prints to the current line but doesn’t
start a new one. The Ln in putStrLn indicates that it starts a new line.

String concatenation

To concatenate something means to link together. Usually when we
talk about concatenation in programming we’re talking about linear
sequences such as lists or strings of text. If we concatenate two

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 49

strings "Curry" and " Rocks!" we will get the string "Curry Rocks!".
Note the space at the beginning of " Rocks!". Without that, we’d
get "CurryRocks!".

Let’s start a new text file and type the following:

-- print3.hs

module Print3 where

myGreeting :: String

-- The above line reads as: "myGreeting has the type String"

myGreeting = "hello" ++ " world!"

-- Could also be: "hello" ++ " " ++ "world!"

-- to obtain the same result.

hello :: String

hello = "hello"

world :: String

world = "world!"

main :: IO ()

main = do

putStrLn myGreeting

putStrLn secondGreeting

where secondGreeting = concat [hello, " ", world]

Remember, String is a type synonym for [Char]. You can try chang-
ing the type signatures to reflect that and see if it changes anything
in the program execution.

If you execute this, you should see something like:

Prelude> :load print3.hs

[1 of 1] Compiling Print3

Ok, modules loaded: Print3.

*Print3> main

hello world!

hello world!

*Print3>

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 50

This little exercise demonstrates a few things:

1. We defined values at the top level of a module: (myGreeting, hello,
world, and main). That is, they were declared at the top level so
that they are available throughout the module.

2. We specify explicit types for top-level definitions.

3. We concatenate strings with (++) and concat.

3.4 Top-level versus local definitions

What does it mean for something to be at the top level of a module?
It doesn’t necessarily mean it’s defined at the top of the file. When
the compiler reads the file, it will see all the top-level declarations,
no matter what order they come in the file (with some limitations
which we’ll see later). Top-level declarations are not nested within
anything else and they are in scope throughout the whole module.

We can contrast a top-level definition with a local definition. To
be locally defined would mean the declaration is nested within some
other expression and is not visible outside that expression. We prac-
ticed this in the previous chapter with let and where. Here’s an exam-
ple for review:

module TopOrLocal where

topLevelFunction :: Integer -> Integer

topLevelFunction x = x + woot + topLevelValue

where woot :: Integer

woot = 10

topLevelValue :: Integer

topLevelValue = 5

In the above, you could import and use topLevelFunction or
topLevelValue from another module, and they are accessible to ev-
erything else in the module. However, woot is effectively invisible
outside of topLevelFunction. The where and let clauses in Haskell in-
troduce local bindings or declarations. To bind or declare something

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 51

means to give an expression a name. You could pass around and use
an anonymous version of topLevelFunction manually, but giving it a
name and reusing it by that name is less repetitious.

Also note we explicitly declared the type of woot in the where clause,
using the :: syntax. This wasn’t necessary (Haskell’s type inference
would’ve figured it out), but it was done here to show you how. Be
sure to load and run this code in your REPL:

Prelude> :l TopOrLocal.hs

[1 of 1] Compiling TopOrLocal

Ok, modules loaded: TopOrLocal.

*TopOrLocal> topLevelFunction 5

20

Experiment with different arguments and make sure you under-
stand the results you’re getting by walking through the arithmetic in
your head (or on paper).

Exercises: Scope

1. These lines of code are from a REPL session. Is 𝑦 in scope for 𝑧?

Prelude> let x = 5

Prelude> let y = 7

Prelude> let z = x * y

2. These lines of code are from a REPL session. Is ℎ in scope for
function 𝑔? Go with your gut here.

Prelude> let f = 3

Prelude> let g = 6 * f + h

3. This code sample is from a source file. Is everything we need to
execute area in scope?

area d = pi * (r * r)

r = d / 2

4. This code is also from a source file. Now are 𝑟 and 𝑑 in scope for
area?

area d = pi * (r * r)

where r = d / 2

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 52

3.5 Types of concatenation functions

Let’s look at the types of (++) and concat. The ++ function is an infix
operator. When we need to refer to an infix operator in a position
that is not infix — such as when we are using it in a prefix position
or having it stand alone in order to query its type — we must put
parentheses around it. On the other hand, concat is a normal (not
infix) function, so parentheses aren’t necessary:

++ has the type [a] -> [a] -> [a]

concat has the type [[a]] -> [a]

-- Here's how we query that in ghci:

Prelude> :t (++)

(++) :: [a] -> [a] -> [a]

Prelude> :t concat

concat :: [[a]] -> [a]

The type of concat says that we have a list of lists as input and we
will return a list. It will have the same values inside it as the list of lists
did; it just flattens it into one list structure, in a manner of speaking.
A String is a list, a list of Char specifically, and concat can work on lists
of strings or lists of lists of other things:

Prelude> concat [[1, 2], [3, 4, 5], [6, 7]]

[1,2,3,4,5,6,7]

Prelude> concat ["Iowa", "Melman", "Django"]

"IowaMelmanDjango"

(n.b., Assuming you are using GHC 7.10 or higher, if you check
this type signature in your REPL, you will find different result. We
will explain the reason for it later in the book. For your purposes at
this point, please understand Foldable t => t [a] as being [[a]]. The
Foldable t, for our current purposes, can be thought of as another
list. In truth, list is only one of the possible types here — types that
have instances of the Foldable typeclass — but right now, lists are the
only one we care about.)

But what do these types mean? Here’s how we can break it down:

(++) :: [a] -> [a] -> [a]

-- [1] [2] [3]

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 53

Everything after the :: is about our types, not our values. The ‘a’
inside the list type constructor [] is a type variable.

1. Take an argument of type [a]. This type is a list of elements
of some type 𝑎. This function does not know what type 𝑎 is. It
doesn’t need to know. In the context of the program, the type
of 𝑎 will be known and made concrete at some point.

2. Take another argument of type [a], a list of elements whose
type we don’t know. Because the variables are the same, they
must be the same type throughout (a == a).

3. Return a result of type [a]

As we’ll see, because String is a type of list, the operators we use
with strings can also be used on lists of other types, such as lists of
numbers. The type [a] means that we have a list with elements of a
type 𝑎 we do not yet know. If we use the operators to concatenate
lists of numbers, then the 𝑎 in [a] will be some type of number (for
example, integers). If we are concatenating lists of characters, then 𝑎
represents a Char because String is [Char]. The type variable 𝑎 in [a]

is polymorphic. Polymorphism is an important feature of Haskell.
For concatenation, every list must be the same type of list; we cannot
concatenate a list of numbers with a list of characters, for example.
However, since the 𝑎 is a variable at the type level, the literal values
in each list we concatenate need not be the same, only the same type.
In other words, 𝑎 must equal 𝑎 (a == a).

Prelude> "hello" ++ " Chris"

"hello Chris"

-- but

Prelude> "hello" ++ [1, 2, 3]

<interactive>:14:13:

No instance for (Num Char) arising

from the literal ‘1’

In the expression: 1

In the second argument of ‘(++)’,

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 54

namely ‘[1, 2, 3]’

In the expression: "hello" ++ [1, 2, 3]

In the first example, we have two strings, so the type of 𝑎 matches
— they’re both Char in [Char], even though the literal values are dif-
ferent. Since the type matches, no type error occurs and we see the
concatenated result.

In the second example, we have two lists (a String and a list of
numbers) whose types do not match, so we get the error message.
GHCi asks for an instance of the numeric typeclass Num for the type
Char. Wewill discuss typeclasses later. Typeclasses provide definitions
of operations, or functions, that can be shared across sets of types.
For now, you can understand this message as telling you the types
don’t match so it can’t concatenate the two lists.

Exercises: Syntax Errors

Read the syntax of the following functions and decide whether it will
compile. Test them in your REPL and try to fix the syntax errors
where they occur.

1. ++ [1, 2, 3] [4, 5, 6]

2. '<3' ++ ' Haskell'

3. concat ["<3", " Haskell"]

3.6 Concatenation and scoping

We will use parentheses to call ++ as a prefix (not infix) function:

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 55

-- print3flipped.hs

module Print3Flipped where

myGreeting :: String

myGreeting = (++) "hello" " world!"

hello :: String

hello = "hello"

world :: String

world = "world!"

main :: IO ()

main = do

putStrLn myGreeting

putStrLn secondGreeting

where secondGreeting =

(++) hello ((++) " " world)

-- could've been:

-- secondGreeting = hello ++ " " ++ world

In secondGreeting, using ++ as a prefix function forces us to shift
some things around. Parenthesizing it that way emphasizes the right
associativity of the ++ function. Since it’s an infix operator, you can
check for yourself that it’s right associative:

Prelude> :i (++)

(++) :: [a] -> [a] -> [a] -- Defined in ‘GHC.Base’

infixr 5 ++

The where clause creates local bindings for expressions that are not
visible at the top level. In other words, the where clause in the main
function introduces a definition visible only within the expression or
function it’s attached to, rather than making it visible to the entire
module. Something visible at the top level is in scope for all parts of
the module and maybe exported by the module or imported by a dif-
ferent module. Local definitions, on the other hand, are only visible
to that one function. You cannot import into a different module and
reuse secondGreeting.

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 56

To illustrate:

-- print3broken.hs

module Print3Broken where

printSecond :: IO ()

printSecond = do

putStrLn greeting

main :: IO ()

main = do

putStrLn greeting

printSecond

where greeting = "Yarrrrr"

You should get an error like this:

Prelude> :l print3broken.hs

[1 of 1] Compiling Print3Broken (print3broken.hs, interpreted)

print3broken.hs:6:12: Not in scope: ‘greeting’

Failed, modules loaded: none.

Let’s take a closer look at this error:

print3broken.hs:6:12: Not in scope: ‘greeting’

[1][2] [3] [4]

1. The line the error occurred on: in this case, line 6.

2. The column the error occurred on: column 12. Text on com-
puters is often described in terms of lines and columns. These
line and column numbers are about lines and columns in your
text file containing the source code.

3. The actual problem. We refer to something not in scope, that
is, not visible to the printSecond function.

4. The thing we referred to that isn’t visible or in scope.

Now make the Print3Broken code compile. It should print “Yarrrrr”
twice on two different lines and then exit.

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 57

3.7 More list functions

Since a String is a specialized type of list, you can use standard list
operations on strings as well.

Here are some examples:

Prelude> :t 'c'

'c' :: Char

Prelude> :t "c"

"c" :: [Char] -- List of Char is String, same thing.

-- the : operator, called "cons," builds a list

Prelude> 'c' : "hris"

"chris"

Prelude> 'P' : ""

"P"

-- head returns the head or first element of a list

Prelude> head "Papuchon"

'P'

-- tail returns the list with the head chopped off

Prelude> tail "Papuchon"

"apuchon"

-- take returns the specified number of elements

-- from the list, starting from the left:

Prelude> take 1 "Papuchon"

"P"

Prelude> take 0 "Papuchon"

""

Prelude> take 6 "Papuchon"

"Papuch"

-- drop returns the remainder of the list after the

-- specified number of elements has been dropped:

Prelude> drop 4 "Papuchon"

"chon"

Prelude> drop 9001 "Papuchon"

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 58

""

Prelude> drop 1 "Papuchon"

"apuchon"

-- we've already seen the ++ operator

Prelude> "Papu" ++ "chon"

"Papuchon"

Prelude> "Papu" ++ ""

"Papu"

-- !! returns the element that is in the specified

-- position in the list. Note that this is an

-- indexing function, and indices in Haskell start

-- from 0. That means the first element of your

-- list is 0, not 1, when using this function.

Prelude> "Papuchon" !! 0

'P'

Prelude> "Papuchon" !! 4

'c'

Note that while all these functions are standard Prelude functions,
many of them are considered unsafe They are unsafe because they
do not cover the case where they are given an empty list as input.
Instead they just throw out an error message, or exception:

Prelude> head ""

*** Exception: Prelude.head: empty list

Prelude> "" !! 4

*** Exception: Prelude.!!: index too large

This isn’t ideal behavior, so the use of these functions is considered
unwise for programs of any real size or complexity, although we will
use them in these first few chapters. We will address how to cover all
cases and make safer versions of such functions in a later chapter.

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 59

3.8 Chapter Exercises

Reading syntax

1. For the following lines of code, read the syntax carefully and
decide if they are written correctly. Test them in your REPL
after you’ve decided to check your work. Correct as many as
you can.

a) concat [[1, 2, 3], [4, 5, 6]]

b) ++ [1, 2, 3] [4, 5, 6]

c) (++) "hello" " world"

d) ["hello" ++ " world]

e) 4 !! "hello"

f) (!!) "hello" 4

g) take "4 lovely"

h) take 3 "awesome"

2. Next we have two sets: the first set is lines of code and the other
is a set of results. Read the code and figure out which results
came from which lines of code. Be sure to test them in the
REPL.

a) concat [[1 * 6], [2 * 6], [3 * 6]]

b) "rain" ++ drop 2 "elbow"

c) 10 * head [1, 2, 3]

d) (take 3 "Julie") ++ (tail "yes")

e) concat [tail [1, 2, 3],

tail [4, 5, 6],

tail [7, 8, 9]]

Can you match each of the previous expressions to one of these
results presented in a scrambled order?

a) "Jules"

b) [2,3,5,6,8,9]

c) "rainbow"

d) [6,12,18]

e) 10

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 60

Building functions

1. Given the list-manipulation functions mentioned in this chap-
ter, write functions that take the following inputs and return the
expected outputs. Do them directly in your REPL and use the
take and drop functions you’ve already seen.

Example

-- If you apply your function to this value:

"Hello World"

-- Your function should return:

"ello World"

The following would be a fine solution:

Prelude> drop 1 "Hello World"

"ello World"

Now write expressions to perform the following transforma-
tions, just with the functions you’ve seen in this chapter. You
do not need to do anything clever here.

a) -- Given

"Curry is awesome"

-- Return

"Curry is awesome!"

b) -- Given

"Curry is awesome!"

-- Return

"y"

c) -- Given

"Curry is awesome!"

-- Return

"awesome!"

2. Now take each of the above and rewrite it in a source file as
a general function that could take different string inputs as
arguments but retain the same behavior. Use a variable as the

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 61

argument to your (named) functions. If you’re unsure how to
do this, refresh your memory by looking at the waxOff exercise
from the previous chapter and the TopOrLocal module from this
chapter.

3. Write a function of type String -> Char which returns the third
character in a String. Remember to give the function a name
and apply it to a variable, not a specific String, so that it could
be reused for different String inputs, as demonstrated (feel free
to name the function something else. Be sure to fill in the type
signature and fill in the function definition after the equals sign):

thirdLetter ::

thirdLetter x =

-- If you apply your function to this value:

"Curry is awesome"

-- Your function should return

`r'

Note that programming languages conventionally start indexing
things by zero, so getting the zeroth index of a string will get
you the first letter. Accordingly, indexing with 3 will actually
get you the fourth. Keep this in mind as you write this function.

4. Now change that function so the string operated on is always
the same and the variable represents the number of the letter
you want to return (you can use “Curry is awesome!” as your
string input or a different string if you prefer).

letterIndex :: Int -> Char

letterIndex x =

5. Using the take and drop functions we looked at above, see if you
can write a function called rvrs (an abbreviation of ‘reverse’ used
because there is a function called ‘reverse’ already in Prelude,
so if you call your function the same name, you’ll get an error
message). rvrs should take the string “Curry is awesome” and
return the result “awesome is Curry.” This may not be the most

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 62

lovely Haskell code you will ever write, but it is quite possible
using only what we’ve learned so far. First write it as a single
function in a source file. This doesn’t need to, and shouldn’t,
work for reversing the words of any sentence. You’re expected
only to slice and dice this particular string with take and drop.

6. Let’s see if we can expand that function into a module. Why
would we want to? By expanding it into a module, we can add
more functions later that can interact with each other. We can
also then export it to other modules if we want to and use this
code in those other modules. There are different ways you
could lay it out, but for the sake of convenience, we’ll show you
a sample layout so that you can fill in the blanks:

module Reverse where

rvrs :: String -> String

rvrs x =

main :: IO ()

main = print ()

Into the parentheses after print you’ll need to fill in your func-
tion name rvrs plus the argument you’re applying rvrs to, in this
case “Curry is awesome.” That rvrs function plus its argument
are now the argument to print. It’s important to put them inside
the parentheses so that that function gets applied and evaluted
first, and then that result is printed.

Of course, we have also mentioned that you can use the $ sym-
bol to avoid using parentheses, too. Try modifying your main
function to use that instead of the parentheses.

3.9 Definitions

1. A String is a sequence of characters. In Haskell, String is repre-
sented by a linked-list of Char values, aka [Char].

2. A type or datatype is a classification of values or data. Types in
Haskell determine what values are members of the type or that

CHAPTER 3. SIMPLE OPERATIONS WITH TEXT 63

inhabit the type. Unlike in other languages, datatypes in Haskell
by default do not delimit the operations that can be performed
on that data.

3. Concatenation is the joining together of sequences of values.
Often in Haskell this is meant with respect to the [] or “List”
datatype, which also applies to String which is [Char]. The con-
catenation function in Haskell is (++) which has type [a] -> [a]

-> [a]. For example:

Prelude> "tacos" ++ " " ++ "rock"

"tacos rock"

4. Scope is where a variable referred to by name is valid. Another
word used with the same meaning is visibility, because if a vari-
able isn’t visible it’s not in scope.

5. Local bindings are bindings local to particular expressions. The
primary delineation here from top level bindings is that local
bindings cannot be imported by other programs or modules.

6. Top level bindings in Haskell are bindings that stand outside of
any other declaration. The main feature of top-level bindings
is that they can be made available to other modules within your
programs or to other people’s programs.

7. Data structures are a way of organizing data so that the data can
be accessed conveniently or efficiently.

Chapter 4

Basic datatypes

There are many ways of
trying to understand
programs. People often rely
too much on one way, which
is called “debugging” and
consists of running a
partly-understood program
to see if it does what you
expected. Another way, which
ML advocates, is to install
some means of understanding
in the very programs
themselves.

Robin Milner

64

CHAPTER 4. BECAUSE PIGS CAN’T FLY 65

4.1 Basic Datatypes

Haskell has a robust and expressive type system. Types play an im-
portant role in the readability, safety, and maintainability of Haskell
code as they allow us to classify and delimit data, thus restricting the
forms of data our programs can process. Types, also calld datatypes,
provide the means to build programs more quickly and also allow
for greater ease of maintenance. As we learn more Haskell, we’ll
learn how to leverage types in a way that lets us accomplish the same
things but with less code.

So far, we’ve looked at expressions involving numbers, characters,
and lists of characters, also called strings. These are some of the
standard built-in datatypes that categorize and delimit values. While
those are useful datatypes and cover a lot of types of values, they
certainly don’t cover every type of data. In this chapter, we will

• review types we have seen in previous chapters;

• learn about datatypes, type constructors, and data constructors;

• work with predefined datatypes;

• learn more about type signatures and a bit about typeclasses.

4.2 What are types?

Expressions, when evaluated, reduce to values. Every value has a
type. Types are how we group a set of values together that share
something in common. Sometimes that “something in common”
is abstract, sometimes it’s a specific model of a particular concept
or domain. If you’ve taken a mathematics course that covered sets,
thinking about types as being like sets will help guide your intuition
on what types are and how they work in a mathematical1 sense.

1 Set theory is the study of mathematical collections of objects. Set theory was a
precursor to type theory, the latter being used prolifically in the design of program-
ming languages like Haskell. Logical operations like disjunction (or) and conjunction
(and) used in the manipulation of sets have equivalents in Haskell’s type system.

CHAPTER 4. BECAUSE PIGS CAN’T FLY 66

4.3 Anatomy of a data declaration

Data declarations are how datatypes are defined.
The type constructor is the name of the type and is capitalized.

When you are reading or writing type signatures (the type level of
your code), the type names or type constructors are what you use.

Data constructors are the values that inhabit the type they are
defined in. They are the values that show up in your code, at the
term level instead of the type level. By “term level”, we mean they
are the values as they appear in your code or the values that your
code evaluates to.

We will start with a basic datatype to see how datatypes are struc-
tured and get acquainted with the vocabulary. Bool isn’t a datatype
we’ve seen yet in the book, but it provides for truth values. It is
named after the great logician George Boole and the system of logic
named for him. Because there are only two truth values, it’s easy to
list all the data constructors:

-- the definition of Bool

data Bool = False | True

-- [1] [2] [3] [4]

1. Type constructor for datatype Bool. This is the name of the type
and shows up in type signatures.

2. Data constructor for the value False.

3. Pipe | indicates a sum type or logical disjunction: “or.” So, a Bool

value is True or False.

4. Data constructor for the value True.

The whole thing is called a data declaration. Data declarations do
not always follow precisely the same pattern — there are datatypes
that use logical conjunction (“and”) instead of disjunction, and some
type constructors and data constructors may have arguments. The
thing they have in common is the keyword data followed by the type
constructor (or name of the type that will appear in type signatures),
the equals sign to denote a definition, and then data constructors (or
names of values that inhabit your term-level code).

CHAPTER 4. BECAUSE PIGS CAN’T FLY 67

You can find the datatype definition for built-in datatypes byusing
:info in GHCi:

Prelude> :info Bool

data Bool = False | True

Let’s look at where different parts of datatypes show up in our
code. If we query the type information for a function called not we
see that it takes one Bool value and returns another Bool value, so the
type signature makes reference to the type constructor, or datatype
name:

Prelude> :t not

not :: Bool -> Bool

But when we use the not function, we use the data constructors,
or values:

Prelude> not True

False

And our expression evaluates to another data constructor, or value
— in this case the other data constructor for the same datatype.

Exercises: Mood Swing

Given the following datatype, answer the following questions:

data Mood = Blah | Woot deriving Show

The deriving Show part is not something we’ve explained yet. For
now, all we’ll say is that when you make your own datatypes, deriving
Show allows the values of that type to be printed to the screen. We’ll
talk about it more when we talk about typeclasses in detail.

1. What is the type constructor, or name of this type?

2. If the function requires a Mood value, what are the values you
could possibly use there?

CHAPTER 4. BECAUSE PIGS CAN’T FLY 68

3. We are trying to write a function changeMood to change Chris’s
mood instantaneously. It should act like not in that, given one
value, it returns the other value of the same type. So far, we’ve
written a type signature changeMood :: Mood -> Woot. What’swrong
with that?

4. Nowwewant towrite the function that changes his mood. Given
an input mood, it gives us the other one. Fix any mistakes and
complete the function:

changeMood Mood = Woot

changeMood _ = Blah

We’re doing something here called pattern matching. We can
define a function by matching on a data constructor, or value,
and descrbing the behavior the function should have based
on which value it matches. The underscore in the second line
denotes a catch-all, otherwise case. So, in the first line of the
function, we’re telling it what to do in the case of a specific
input. In the second one, we’re telling it what to do regardless of
all potential inputs. It’s trivial when there are only two potential
values of a given type, but aswe deal with more complex cases, it
can be convenient. We’ll talk about pattern matching in greater
detail in a later chapter.

5. Enter all of the above — datatype (including the deriving Show

bit), your corrected type signature, and the corrected function
into a source file. Load it and run it in GHCi to make sure you
got it right.

4.4 Numeric types

Let’s next look at numeric types, because we’ve already seen these
types in previous chapters, and numbers are familiar territory. It’s
important to understand that Haskell does not just use one type of
number. For most purposes, the types of numbers we need to be
concerned with are:

Integral numbers These are whole numbers, positive and negative.

CHAPTER 4. BECAUSE PIGS CAN’T FLY 69

1. Int: This type is a fixed-precision integer. By “fixed precision,”
we mean it has a range, with a maximum and a minimum, and
so it cannot be arbitrarily large or small — more about this in a
moment.

2. Integer: This type is also for integers, but this one supports
arbitrarily large (or small) numbers.

Fractional These are not integers. Fractional values include the
following four types:

1. Float: This is the type used for single-precision floating point
numbers. Fixed-point number representations have immutable
numbers of digits assigned for the parts of the number before
and after the decimal point. In contrast, floating point can shift
how many bits it uses to represent numbers before or after
the decimal point. This flexibility does, however, mean that
floating point arithmetic violates some common assumptions
and should only be used with great care. Generally, floating
point numbers should not be used at all in business applications.

2. Double: This is a double-precision floating point number type.
It has twice as many bits with which to describe numbers as the
Float type.

3. Rational: This is a fractional number that represents a ratio of
two integers. Thevalue 1 / 2 :: Rationalwill be avalue carrying
two Integer values, the numerator 1 and the denominator 2, and
represents a ratio of 1 to 2. Rational is arbitrarily precise but not
as efficient as Scientific.

4. Scientific: This is a space efficient and almost-arbitrary preci-
sion scientific number type. Scientificnumbers are represented
using scientific notation. It stores the coefficient as an Integer

and the exponent as an Int. Since Int isn’t arbitrarily-large there
is technically a limit to the size of number you can express with
Scientific, but hitting that limit is quite unlikely. Scientific is
available in a library2

2Hackage page for scientific https://hackage.haskell.org/package/scientific and can
be installed using cabal install or stack install.

https://hackage.haskell.org/package/scientific

CHAPTER 4. BECAUSE PIGS CAN’T FLY 70

These numeric datatypes all have instances of a typeclass called
Num. We will talk about typeclasses in the upcoming chapters, but as
we look at the types in this section, you will see Num listed in some of
the type information.

Typeclasses are a way of adding functionality to types that is
reusable across all the types that have instances of that typeclass. Num
is a typeclass for which most numeric types will have an instance
because there are standard functions that are convenient to have
available for all types of numbers. The Num typeclass is what provides
your standard (+), (-), and (*) operators along with a few others. Any
type that has an instance of Num can be used with those functions. An
instance defines how the functions work for that specific type. We
will talk about typeclasses in much more detail soon.

Integral numbers

As we noted above, there are two main types of integral numbers:
Int and Integer.

Integral numbers are whole numbers with no fractional compo-
nent. The following are integral numbers:

1 2 199 32442353464675685678

The following are not integral numbers:

1.3 1/2

Integer

The numbers of type Integer are straightforward enough; for the
most part, they are the sorts of numbers we’re all used to working
with in arithmetic equations that involve whole numbers. They can
be positive or negative, and Integer extends as far in either direction
as one needs them to go.

The Bool datatype only has two possible values, so we can list them
explicitly as data constructors. In the case of Integer, and most nu-
meric datatypes, these data constructors are not written out because
they include an infinite series of whole numbers. We’d need infinite
data constructors stretching up and down from zero. Hypotheti-
cally we could represent Integer as a sum of three cases, recursive

CHAPTER 4. BECAUSE PIGS CAN’T FLY 71

constructors headed towards negative infinity, zero, and recursive
constructors headed towards positive infinity. This representation
would be terribly inefficient so there’s some GHC magic sprinkled
on it.

Why do we have Int?

The Int numeric type is an artifact of what computer hardware has
supported natively over the years. Most programs should use Integer

and not Int, unless the limitations of the type are understood and
the additional performance makes a difference.

The danger of Int and the related types Int8, Int16, et al. is that
they cannot express arbitrarily large quantities of information. Since
they are integral, this means they cannot be arbitrarily large in the
positive or negative sense.

Here’s what happens if we try to represent a number too large for
Int8:

Prelude> import GHC.Int

Prelude> 127 :: Int8

127

Prelude> 128 :: Int8

<interactive>:11:1: Warning:

Literal 128 is out of the Int8 range -128..127

If you are trying to write a large negative literal,

use NegativeLiterals

-128

Prelude> (127 + 1) :: Int8

-128

The syntax you see there, :: Int8 is us assigning the Int8 type to
these numbers. As we will explain in more detail in the next chapter,
numbers are polymorphic underneath and the compiler doesn’t
assign them a concrete type until it is forced to. It would be weird
and unexpected if the compiler defaulted all numbers to Int8, so in
order to reproduce the situation of having a number too large for an
Int type, we had to assign that concrete type to it.

The first computation is fine, because it is within the range of
valid values of type Int8, but the 127 + 1 overflows and resets back to

CHAPTER 4. BECAUSE PIGS CAN’T FLY 72

its smallest numeric value. Because the memory the value is allowed
to occupy is fixed for Int8, it cannot grow to accommodate the value
128 the way Integer can. Here the 8 represents how many bits the
type uses to represent integral numbers.3 Being of a fixed size can be
useful in some applications, but most of the time Integer is preferred.

You can find out the minimum and maximum bounds of numeric
types using maxBound and minBound from the Bounded typeclass. Here’s
an example using our Int8 and Int16 example:

Prelude> import GHC.Int

Prelude> :t minBound

minBound :: Bounded a => a

Prelude> :t maxBound

maxBound :: Bounded a => a

Prelude> minBound :: Int8

-128

Prelude> minBound :: Int16

-32768

Prelude> minBound :: Int32

-2147483648

Prelude> minBound :: Int64

-9223372036854775808

Prelude> maxBound :: Int8

127

Prelude> maxBound :: Int16

32767

Prelude> maxBound :: Int32

2147483647

Prelude> maxBound :: Int64

9223372036854775807

Thus you can find the limitations of possible values for any type
that has an instance of that particular typeclass. In this case, we are
able to find out the range of values we can represent with an Int8 is
-128 to 127.

3The representation used for the fixed-size Int types is two’s complement.

CHAPTER 4. BECAUSE PIGS CAN’T FLY 73

You can find out if a type has an instance of Bounded, or any other
typeclass, by asking GHCi for the :info for that type. Doing this will
also give you the datatype representation for the type you queried:

Prelude> :i Int

data Int = GHC.Types.I# GHC.Prim.Int#

instance Bounded Int -- Defined in ‘GHC.Enum’

Int of course has many more typeclass instances, but Bounded is
the one we cared about at this time.

Fractional numbers

The four common Fractional types in use in Haskell are Float, Double,
Rational, and Scientific. Rational, Double, and Float come with your
install of GHC. Scientific comes from a library, as we mentioned
previously. Rational and Scientific are arbitrary precision, with the
latter being much more efficient. Arbitrary precision means that
these can be used to do calculations requiring a high degree of preci-
sion rather than being limited to a specific degree of precision, the
way Float and Double are. You almost never want a Float unless you’re
doing graphics programming such as with OpenGL.

Some computations involving numbers will be fractional rather
than integral. A good example of this is the division function (/)

which has the type:

Prelude> :t (/)

(/) :: Fractional a => a -> a -> a

The notation Fractional a => denotes a typeclass constraint. You
can read it as “the type variable 𝑎 must implement the Fractional

typeclass.” This tells us that whatever type of number 𝑎 turns out to
be, it must be a type that has an instance of the Fractional typeclass;
that is, there must be a declaration of how the operations from that
typeclass will work for the type. The / function will take one number
that implements Fractional, divide it by another of the same type,
and return a value of the same type as the result.

Fractional is a typeclass that requires types to already have an
instance of the Num typeclass. We describe this relationship between
typeclasses by saying that Num is a superclass of Fractional. So (+) and

CHAPTER 4. BECAUSE PIGS CAN’T FLY 74

other functions from the Num typeclass can be used with Fractional

numbers, but functions from the Fractional typeclass cannot be used
with all types that have a Num instance:

Here’s what happens when we use (/) in the REPL:

Prelude> 1 / 2

0.5

Prelude> 4 / 2

2.0

Note that even when we had a whole number as a result, the
number was printed as 2.0, despite having no fractional component.
This is because values of Fractional a => a default to the floating
point type Double. In most cases, you won’t want to explicitly use
Double. You’re usually better off using the arbitrary precision sibling
to Integer, Scientific. Most people do not find it easy to reason about
floating point arithmetic and find it difficult to code around the quirks
(those quirks exist by design, but that’s another story), so in order to
avoid making mistakes, use arbitrary-precision types as a matter of
course.

4.5 Comparing values

Up to this point, most of our operations with numbers have involved
doing simple arithmetic. We can also compare numbers to deter-
mine whether they are equal, greater than, or less than:

Prelude> let x = 5

Prelude> x == 5

True

Prelude> x == 6

False

Prelude> x < 7

True

Prelude> x > 3

True

Prelude> x /= 5

False

CHAPTER 4. BECAUSE PIGS CAN’T FLY 75

Notice here that we first declared a value for 𝑥 using the standard
equals sign. Nowwe know that for the remainder of ourREPL session,
all instances of 𝑥 will be the value 5. Because the equals sign in
Haskell is already used to define variables and functions, we must
use a double equals sign, ==, to have the specific meaning “is equal
to.” The /= symbol means “is not equal to.” The other symbols should
already be familiar to you.

Having done this, we see that GHCi is returning a result of either
True or False, depending on whether the expression is true or false.
True and False are the data constructors for the Bool datatype we saw
above. If you look at the type information for any of these infix
operators, you’ll find the result type listed as Bool:

Prelude> :t (==)

(==) :: Eq a => a -> a -> Bool

Prelude> :t (<)

(<) :: Ord a => a -> a -> Bool

Notice that we get some typeclass constraints again. Eq is a type-
class that includes everything that can be compared and determined
to be equal in value; Ord is a typeclass that includes all things that
can be ordered. Note that neither of these is limited to numbers.
Numbers can be compared and ordered, of course, but so can letters,
so this typeclass constraint allows for flexibility. These equality and
comparison functions can take any values that can be said to have
equal value or can be ordered. The rest of the type information tells
us that it takes one of these values, compares it to another value of
the same type, and returns a Bool value. As we’ve already seen, the
Bool values are True or False.

With this information, let’s try playing with some other values:

Prelude> 'a' == 'a'

True

Prelude> 'a' == 'b'

False

Prelude> 'a' < 'b'

True

Prelude> 'a' > 'b'

False

CHAPTER 4. BECAUSE PIGS CAN’T FLY 76

Prelude> 'a' == 'A'

False

Prelude> "Julie" == "Chris"

False

These examples are easy enough to understand. We know that
alphabetical characters can be ordered, although we do not normally
think of ‘a’ as being “less than” ‘b.’ But we can understand that here it
means ’a’ comes before ’b’ in alphabetical order. Further, we see this
also works with strings such as “Julie” or “Chris.” GHCi has faithfully
determined that those two strings are not equal in value.

Now use your REPL to determine whether ‘a’ or ‘A’ is greater.
Next, take a look at this sample and see if you can figure out why

GHCi returns the given results:

Prelude> "Julie" > "Chris"

True

Prelude> "Chris" > "Julie"

False

Good to see Haskell code that reflects reality. “Julie” is greater than
“Chris” because J > C, if the words had been “Back” and “Brack” then
it would’ve skipped the first letter to determine which was greater
because B == B, then ”Brack” would’ve been greater because ‘r’ > ‘a’
in the lexicographic ordering Haskell uses for characters. Note that
this is leaning on the Ord typeclass instances for list and Char. You can
only compare lists of items where the items themselves also have
an instance of Ord. Accordingly, the following will work because Char

and Integer have instances of Ord:

Prelude> ['a', 'b'] > ['b', 'a']

False

Prelude> 1 > 2

False

Prelude> [1, 2] > [2, 1]

False

A datatype that has no instance of Ord will not work with these
functions:

CHAPTER 4. BECAUSE PIGS CAN’T FLY 77

Prelude> data Mood = Blah | Woot deriving Show

Prelude> [Blah, Woot]

[Blah,Woot]

Prelude> [Blah, Woot] > [Woot, Blah]

<interactive>:28:14:

No instance for (Ord Mood) arising

from a use of ‘>’

In the expression: [Blah, Woot] > [Woot, Blah]

In an equation for ‘it’:

it = [Blah, Woot] > [Woot, Blah]

“No instance for (Ord Mood)” means it doesn’t have an Ord instance
to know how to order these values.

Here is another thing that doesn’t work with these functions:

Prelude> "Julie" == 8

<interactive>:38:12:

No instance for (Num [Char]) arising from

the literal ‘8’

In the second argument of ‘(==)’, namely ‘8’

In the expression: "Julie" == 8

In an equation for ‘it’: it = "Julie" == 8

We said above that comparison functions are polymorphic and
can work with a lot of different types. But we also noted that the
type information only admitted values of matching types. Once
you’ve given a term-level value that is a string such as “Julie,” the
type is determined and the other argument must have the same type.
The error message we see above is telling us that the type of the
literal value ‘8’ doesn’t match the type of the first value, and for this
function, it must.

4.6 Go on and Bool me

In Haskell the Bool datatype comes standard in the Prelude. As we
saw earlier, Bool is a sum type with two constructors:

CHAPTER 4. BECAUSE PIGS CAN’T FLY 78

data Bool = False | True

This declaration creates a datatype with the type constructor Bool,
and we refer to specific types by their type constructors. We use type
constructors in type signatures, not in the expressions that make up
our term-level code. The type constructor Bool takes no arguments
(some type constructors do take arguments). The definition of Bool
above also creates two data constructors, True and False. Both of
these values are of type Bool. Any function that accepts values of
type Bool must allow for the possibility of True or False; you cannot
specify in the type that it should only accept one specific value. An
English language formulation of this datatype would be something
like: “The datatype Bool is represented by the values True or False.”

Remember, you can find the type of any value by asking for it in
GHCi, just as you can with functions:

Prelude> :t True

True :: Bool

Prelude> :t "Julie"

"Julie" :: [Char]

Now let’s have some fun with Bool. We’ll start by reviewing the not

function:

Prelude> :t not

not :: Bool -> Bool

Prelude> not True

False

Note that we capitalize True and False because they are our data
constructors. What happens if you try to use not without capitalizing
them?

Let’s try something slightly more complex:

Prelude> let x = 5

Prelude> not (x == 5)

False

Prelude> not (x > 7)

True

CHAPTER 4. BECAUSE PIGS CAN’T FLY 79

We know that comparison functions evaluate to a Bool value, so
we can use them with not.

Let’s playwith infix operators that deal directlywith boolean logic.
How do we use Bool and these associated functions?

-- && is conjunction, so

-- this means "true and true."

Prelude> True && True

True

-- || is disjunction, so

-- this means "false or true."

Prelude> False || True

True

Prelude> True && False

False

Prelude> not True

False

Prelude> not (True && True)

False

We can look up info about datatypes that are in scope (if they’re
not in scope, we have to import the module they live in to bring
them into scope) using the :info command GHCi provides. Scope
is a way to refer to where a named binding to an expression is valid.
When we say something is “in scope”, it means you can use that
expression by its bound name, either because it was defined in the
same function or module, or because you imported it. So, it’s visible
to the program we’re trying to run right now. What is built into
Haskell’s Prelude module is significant because everything in it is
automatically imported and in scope. We will demonstrate how to
shut this off later, but for now, this is what you want.

Exercises: Find the Mistakes

The following lines of code may have mistakes — some of them
won’t compile! You know what you need to do.

1. not True && true

2. not (x = 6)

CHAPTER 4. BECAUSE PIGS CAN’T FLY 80

3. (1 * 2) > 5

4. [Merry] > [Happy]

5. [1, 2, 3] ++ "look at me!"

Conditionals with if-then-else

Haskell doesn’t have ‘if’ statements, but it does have if expressions. It’s
a built-in bit of syntax that works with the Bool datatype.

Prelude> if True then "Truthin'" else "Falsin'"

"Truthin'"

Prelude> if False then "Truthin'" else "Falsin'"

"Falsin'"

Prelude> :t if True then "Truthin'" else "Falsin'"

if True then "Truthin'" else "Falsin'" :: [Char]

The structure here is:

if CONDITION

then EXPRESSION_A

else EXPRESSION_B

If the condition (which must evaluate to Bool) reduces to the Bool
value True, then EXPRESSION_A is the result, otherwise EXPRESSION_B. Here
the type was String (aka [Char]) because that’s the type of the value
that is returned as a result.

If-expressions can be thought of as a way to choose between two
values. You can embed a variety of expressions within the if of an if-
then-else, as long as it evaluates to Bool. The types of the expressions
in the then and else clauses must be the same, as in the following:

Prelude> let x = 0

Prelude> if (x + 1 == 1) then "AWESOME" else "wut"

"AWESOME"

Here’s how it reduces:

CHAPTER 4. BECAUSE PIGS CAN’T FLY 81

-- Given:

x = 0

if (x + 1 == 1) then "AWESOME" else "wut"

-- x is zero

if (0 + 1 == 1) then "AWESOME" else "wut"

-- reduce 0 + 1 so we can see if it's equal to 1

if (1 == 1) then "AWESOME" else "wut"

-- Does 1 equal 1?

if True then "AWESOME" else "wut"

-- pick the branch based on the Bool value

"AWESOME"

-- dunzo

But this does not work:

Prelude> let x = 0

Prelude> if x * 100 then "adopt a dog" else "or a cat"

<interactive>:15:7:

No instance for (Num Bool) arising

from a use of ‘*’

In the expression: (x * 100)

In the expression:

if (x * 100)

then "adopt a dog"

else "or a cat"

In an equation for ‘it’:

it = if (x * 100)

then "adopt a dog"

else "or a cat"

We got this type error because the condition passed to the if

expression is of type Num a => a, not Bool and Bool doesn’t implement

CHAPTER 4. BECAUSE PIGS CAN’T FLY 82

the Num typeclass. To oversimplify, (x * 100) evaluates to a numeric
result, and numbers aren’t truth values. It would have typechecked
had the condition been x * 100 == 0 or x * 100 == 9001. In those cases,
it would’ve been an equality check of two numbers which reduces to
a Bool value.

Here’s an example of a function that uses a Bool value in an if
expression:

-- greetIfCool1.hs

module GreetIfCool1 where

greetIfCool :: String -> IO ()

greetIfCool coolness =

if cool

then putStrLn "eyyyyy. What's shakin'?"

else

putStrLn "pshhhh."

where cool = coolness == "downright frosty yo"

When you test this in the REPL, it should play out like this:

Prelude> :l greetIfCool1.hs

[1 of 1] Compiling GreetIfCool1

Ok, modules loaded: GreetIfCool1.

Prelude> greetIfCool "downright frosty yo"

eyyyyy. What's shakin'?

Prelude> greetIfCool "please love me"

pshhhh.

Also note that greetIfCool could’ve been written with cool being a
function rather than a value defined against the argument directly
like so:

CHAPTER 4. BECAUSE PIGS CAN’T FLY 83

-- greetIfCool2.hs

module GreetIfCool2 where

greetIfCool :: String -> IO ()

greetIfCool coolness =

if cool coolness

then putStrLn "eyyyyy. What's shakin'?"

else

putStrLn "pshhhh."

where cool v = v == "downright frosty yo"

4.7 Tuples

The tuple in Haskell is a type that allows you to store and pass around
multiple values within a single value. Tuples have a distinctive, built-
in syntax that is used at both type and term levels, and each tuple
has a fixed number of constituents. We refer to tuples by how many
constituents are in each tuple: the two-tuple or pair, for example,
has two values inside it (x, y); the three-tuple or triple has three (x,

y, z), and so on. This number is also known as the tuple’s arity. As
we will see, the values within a tuple do not have to be of the same
type.

We will start by looking at the two-tuple, a tuple with two con-
stituents. The two-tuple is expressed at both the type level and term
level with the constructor (,). The datatype declaration looks like
this:

Prelude> :info (,)

data (,) a b = (,) a b

This is different from the Bool type we looked at earlier in a couple
of important ways, even apart from that special type constructor
syntax. The first is that it has two parameters, represented by the type
variables 𝑎 and 𝑏. Those have to be applied to concrete types, much
as variables at the term level have to be applied to values to evaluate
a function. The second major difference is that this is a product type,
not a sum type. A product type represents a logical conjunction: you
must supply both arguments to produce a value.

CHAPTER 4. BECAUSE PIGS CAN’T FLY 84

Notice that the two type variables are different, so that allows for
tuples that contain values of two different types. The types are not,
however, required to be different:

λ> (,) 8 10

(8,10)

λ> (,) 8 "Julie"

(8,"Julie")

λ> (,) True 'c'

(True,'c')

But if we try to apply it to only one argument:

λ> (,) 9

<interactive>:34:1:

No instance for (Show (b0 -> (a0, b0)))

(maybe you haven't applied enough arguments to a function?)

arising from a use of ‘print’

In the first argument of ‘print’, namely ‘it’

In a stmt of an interactive GHCi command: print it

Well, look at that error. This is one we will explore in detail soon,
but for now the important part is the part in parentheses: we haven’t
applied the function — in this case, the data constructor — enough
arguments.

The two-tuple in Haskell has some default convenience functions
for getting the first or second value. They’re named fst and snd:

fst :: (a, b) -> a

snd :: (a, b) -> b

As you can see from the above types, there’s nothing those func-
tions could do other than return the first or second value respectively.

Here are some examples of manipulating tuples, specifically the
two-tuple:

Prelude> let myTup = (1 :: Integer, "blah")

Prelude> :t myTup

myTup :: (Integer, [Char])

CHAPTER 4. BECAUSE PIGS CAN’T FLY 85

Prelude> fst myTup

1

Prelude> snd myTup

"blah"

Prelude> import Data.Tuple

Prelude> swap myTup

("blah",1)

We had to import Data.Tuple because swap isn’t included in the
Prelude.

We can also combine tuples with other expressions:

Prelude> 2 + fst (1, 2)

3

Prelude> 2 + snd (1, 2)

4

The (x, y) syntax of the tuple is special. The constructors you
use in the type signatures and in your code (terms) are syntactically
identical even though they’re different things. Sometimes that type
constructor is referred to without the type variables explicitly inside
of it such as (,). Other times, you’ll see (a, b) - particularly in type
signatures.

You can use that syntax to pattern match
It’s generally unwise to use tuples of an overly large size, both for

efficiency and sanity reasons. Most tuples you see will be (, , , ,)

(5-tuple) or smaller.

4.8 Lists

Lists in Haskell are another type used to contain multiple values
within a single value. However, they differ from tuples in three
important ways: First, all constituents of a list must be of the same
type. Second, Lists have their own distinct [] syntax. Like the tuple
syntax, it is used for both the type constructor in type signatures
and at the term level to express list values. Third, the number of
constituents within a list can change as you operate on the list, unlike
tuples where the arity is set in the type and immutable.

Here’s an example for your REPL:

CHAPTER 4. BECAUSE PIGS CAN’T FLY 86

Prelude> let awesome = ["Papuchon", "curry", ":)"]

Prelude> awesome

["Papuchon","curry",":)"]

Prelude> :t awesome

awesome :: [[Char]]

First thing to note is that awesome is a list of lists of Char values
because it is a list of strings, and a string is itself just a type alias for
[Char]. This means all the functions and operations valid for lists of
any value, usually expressed as [a], are valid for String because [Char]

is more specific than [a].

Prelude> let alsoAwesome = ["Quake", "The Simons"]

Prelude> :t (++)

(++) :: [a] -> [a] -> [a]

Prelude> awesome ++ alsoAwesome

["Papuchon","curry",":)","Quake","The Simons"]

Prelude> let allAwesome = [awesome, alsoAwesome]

Prelude> allAwesome

[["Papuchon","curry",":)"],["Quake","The Simons"]]

Prelude> :t allAwesome

allAwesome :: [[[Char]]]

Prelude> :t concat

concat :: [[a]] -> [a]

Prelude> concat allAwesome

["Papuchon","curry",":)","Quake","The Simons"]

We’ll save a full exploration of the list datatype until we get to the
chapter on lists. The list data structure gets a whole chapter because
lists have some interesting complexity, we’re going to use them to
demonstrate some things about Haskell’s nonstrict evaluation, and
there aremany standard functions and constructs that can be used
with lists.

4.9 Chapter Exercises

As in previous chapters, youwill gain more byworking out the answer
before you check what GHCi tells you, but be sure to use your REPL

CHAPTER 4. BECAUSE PIGS CAN’T FLY 87

to check your answers to the following exercises. Also, you will need
to have the awesome, alsoAwesome, and allAwesome code from above in
scope for this REPL session. For convenience of reference, here are
those values again:

awesome = ["Papuchon", "curry", ":)"]

alsoAwesome = ["Quake", "The Simons"]

allAwesome = [awesome, alsoAwesome]

length is a function that takes a list and returns a result that tells
how many items are in the list.

1. Given the definition of length above, what would the type signa-
ture be? How many arguments, of what type does it take? What
is the type of the result it evaluates to?

2. What are the results of the following expressions?

a) length [1, 2, 3, 4, 5]

b) length [(1, 2), (2, 3), (3, 4)]

c) length allAwesome

d) length (concat allAwesome)

3. Givenwhatwe knowabout numeric types and the type signature
of length, look at these two expressions. One works and one
returns an error. Determine which will return an error and why.

(n.b., you will find Foldable t => t a representing [a], as with
concat in the previous chapter. Again, consider Foldable t to
represent a list here, even though list is only one of the possible
types.)

Prelude> 6 / 3

-- and

Prelude> 6 / length [1, 2, 3]

4. How can you fix the broken code from the preceding exercise
using a different division function/operator?

5. What is the type of the expression 2 + 3 == 5? What would we
expect as a result?

CHAPTER 4. BECAUSE PIGS CAN’T FLY 88

6. What is the type and expected result value of the following:

Prelude> let x = 5

Prelude> x + 3 == 5

7. Below are some bits of code. Which will work? Why orwhy not?
If they will work, what value would these reduce to?

Prelude> length allAwesome == 2

Prelude> length [1, 'a', 3, 'b']

Prelude> length allAwesome + length awesome

Prelude> (8 == 8) && ('b' < 'a')

Prelude> (8 == 8) && 9

8. Write a function that tells you whether or not a given String (or
list) is a palindrome. Here you’ll want to use a function called
’reverse,’ a predefined function that does just what it sounds like.

reverse :: [a] -> [a]

reverse "blah"

"halb"

isPalindrome :: (Eq a) => [a] -> Bool

isPalindrome x = undefined

9. Write a function to return the absolute value of a number using
if-then-else

myAbs :: Integer -> Integer

myAbs = undefined

10. Fill in the definition of the following function, using fst and
snd:

f :: (a, b) -> (c, d) -> ((b, d), (a, c))

f = undefined

CHAPTER 4. BECAUSE PIGS CAN’T FLY 89

Correcting syntax

In the following examples, you’ll be shown syntactically incorrect
code. Type it in and try to correct it in your text editor, validating it
with GHC or GHCi.

1. Here, we want a function that adds 1 to the length of a string
argument and returns that result.

x = (+)

F xs = w 'x' 1

where w = length xs

2. This is supposed to be the identity function, id.

\ X = x

3. When fixed, this function will return 1 from the value [1, 2, 3].
Hint: you may need to refer back to the section about variables
conventions in “Hello Haskell” to refresh your memory of this
notation.

\ x : xs -> x

4. When fixed, this function will return 1 from the value (1, 2).

f (a b) = A

Match the function names to their types

1. Which of the following types is the type of show?

a) show a => a -> String

b) Show a -> a -> String

c) Show a => a -> String

2. Which of the following types is the type of (==)?

a) a -> a -> Bool

b) Eq a => a -> a -> Bool

c) Eq a -> a -> a -> Bool

CHAPTER 4. BECAUSE PIGS CAN’T FLY 90

d) Eq a => A -> Bool

3. Which of the following types is the type of fst?

a) (a, b) -> a

b) b -> a

c) (a, b) -> b

4. Which of the following types is the type of (+)?

a) (+) :: Num a -> a -> a -> Bool

b) (+) :: Num a => a -> a -> Bool

c) (+) :: num a => a -> a -> a

d) (+) :: Num a => a -> a -> a

e) (+) :: a -> a -> a

4.10 Definitions

1. A tuple is an ordered grouping of values. In Haskell, you cannot
have a tuple with only one element, but there is a zero tuple
also called unit or (). The types of the elements of tuples are
allowed to vary, so you can have both (String, String) or (Integer,
String). Tuples in Haskell are the usual means of expressing an
anonymous product.

2. A typeclass is a set of operations defined with respect to a poly-
morphic type. When a type is an instance of a typeclass, values
of that type can be used in the standard operations defined for
that typeclass. In Haskell, typeclasses are unique pairings of
class and concrete instance. This means that if a given type 𝑎
has an instance of Eq, it has only one instance of Eq.

3. Data constructors in Haskell provide a means of creating values
that inhabit a given type. Data constructors in Haskell have
a type and can either be constant values (nullary) or take one
or more arguments just like functions. In the following exam-
ple, Cat is a nullary data constructor for Pet and Dog is a data
constructor that takes an argument:

CHAPTER 4. BECAUSE PIGS CAN’T FLY 91

-- Why name a cat? They don't answer anyway.

type Name = String

data Pet = Cat | Dog Name

The data constructors have the following types:

Prelude> :t Cat

Cat :: Pet

Prelude> :t Dog

Dog :: Name -> Pet

4. Type constructors in Haskell are not values and can only be used in
type signatures. Just as data declarations generate data construc-
tors to create values that inhabit that type, data declarations
generate type constructors which can be used to denote that type.
In the above example, Pet is the type constructor. A guideline
for differentiating the two kinds of constructors is that type
constructors always go to the left of the = in a data declaration.

5. Data declarations define new datatypes in Haskell. Data decla-
rations always create a new type constructor, but may or may
not create new data constructors. Data declarations are how we
refer to the entire definition that begins with the data keyword.

6. A type alias is away to refer to a type constructor or type constant
by an alternate name, usually to communicate something more
specific or for brevity.

type Name = String

-- creates a new type alias Name of the

-- type String *not* a data declaration,

-- just a type alias declaration

7. Arity is the numberof arguments a function accepts. This notion
is a little slippery in Haskell as, due to currying, all functions are
1-arity and we handle accepting multiple arguments by nesting
functions.

CHAPTER 4. BECAUSE PIGS CAN’T FLY 92

8. Polymorphism in Haskell means being able to write code in terms
of values which may be one of several, or any, type. Polymor-
phism in Haskell is either parametric or constrained. The identity
function, id, is an example of a parametrically polymorphic
function:

id :: a -> a

id x = x

Here id works for a value of any type because it doesn’t use any
information specific to a given type or set of types. Whereas,
the following function isEqual:

isEqual :: Eq a => a -> a -> Bool

isEqual x y = x == y

Is polymorphic, but constrained or bounded to the set of types
which have an instance of the Eq typeclass. The different kinds
of polymorphism will be discussed in greater detail in a later
chapter.

4.11 Names and variables

Names

In Haskell there are seven categories of entities that have names:
functions, term-level variables, data constructors, type variables,
type constructors, typeclasses, and modules. Term-level variables
and data constructors exist in your terms. Term-level is where your
values live and is the code that executes when your program is run-
ning. At the type-level, which is used during the static analysis &
verification of your program, we have type variables, type construc-
tors, and typeclasses. Lastly, for the purpose of organizing our code
into coherent groupings across different files (more later), we have
modules.

Conventions for variables

Haskell uses a lot of variables, and some conventions have developed.
It’s not critical that you memorize this, because for the most part,

CHAPTER 4. BECAUSE PIGS CAN’T FLY 93

these are merely conventions, but familiarizing yourself with them
will help you read Haskell code.

Type variables (that is, variables in type signatures) generally start
at 𝑎 and go from there: 𝑎, 𝑏, 𝑐, and so forth. You may occasionally see
them with numbers appended to them, e.g., 𝑎1.

Functions can be used as arguments and in that case are typically
labeled with variables starting at 𝑓 (followed by 𝑔 and so on). They
may sometimes have numbers appended (e.g., 𝑓1) and may also
sometimes be decorated with the ′ character as in 𝑓 ′. This would
be pronounced “eff-prime,” should you have need to say it aloud.
Usually this denotes a function that is closely related to or a helper
function to function 𝑓. Functions may also be given variable names
that are not on this spectrum as a mnemonic. For example, a function
that results in a list of prime numbers might be called 𝑝, or a function
that fetches some text might be called 𝑡𝑥𝑡.

Variables do not have to be a single letter. In small programs, they
often are; in larger programs, they are often not a single letter. If
there are many variables in a function or program, as is common, it
is helpful to have descriptive variable names. It is often advisable in
domain-specific code to to use domain-specific variable names.

Arguments to functions are most often given names starting at
𝑥, again occasionally seen numbered as in 𝑥1. Other single-letter
variable names may be chosen when they serve a mnemonic role,
such as choosing 𝑟 to represent a value that is the radius of a circle.

If you have a list of things you have named 𝑥, by convention that
will usually be called 𝑥𝑠, that is, the plural of 𝑥. You will see this
convention often in the form (x:xs), which means you have a list in
which the head of the list is 𝑥 and the rest of the list is 𝑥𝑠.

All of these, though, are merely conventions, not definite rules.
While we will generally adhere to the conventions in this book, any
Haskell code you see out in the wild may not. Calling a type variable
𝑥 instead of 𝑎 is not going to break anything. As in the lambda
calculus, the names don’t have any inherent meaning. We offer this
information as a descriptive guide of Haskell conventions, not as
rules you must follow in your own code.

	Contents
	Hello, Haskell!
	Hello, Haskell
	Interacting with Haskell code
	Understanding expressions
	Functions
	Evaluation
	Infix operators
	Declaring values
	Arithmetic functions in Haskell
	Parenthesization
	Let and where
	Chapter Exercises
	Definitions
	Follow-up resources

	Strings
	Printing strings
	A first look at types
	Printing simple strings
	Top-level versus local definitions
	Types of concatenation functions
	Concatenation and scoping
	More list functions
	Chapter Exercises
	Definitions

	Basic datatypes
	Basic Datatypes
	What are types?
	Anatomy of a data declaration
	Numeric types
	Comparing values
	Go on and Bool me
	Tuples
	Lists
	Chapter Exercises
	Definitions
	Names and variables

